We need to first come up with a balanced equation:
→ 
We know that the molar ratio of hydrogen to oxygen to water now is 4:1:2.
Converting the amount of grams given to moles is as follows:
Hydrogen: 
Oxygen: 
We know now that the limiting reactant is oxygen. We can then know that the number of moles of water are produced are double the number of moles of oxygen used due to the ratio that we established at the beginning - 4:1:2.
So we now can use 6.25 moles of water as the amount produced.
Then we convert moles of water to grams:

Now we know that there are 112.59g of water produced when we start with 50g of hydrogen and 50g of water.
Answer:
204.5505 grams
2.5666 moles
Explanation:
For the first question, multiply 3.5 (# of moles) by 58.443 (g/mol for NaCl).
58.443 * 3.5
<em>I'll distribute 3.5 into 58.443.</em>
(3.5 * 50) + (3.5 * 8) + (3.5 * 0.4) + (3.5 * 0.04) + (3.5 * 0.003)
175 + 28 + 1.4 + 0.14 + 0.0105
203 + 1.4 + 0.14 + 0.0105
204.4 + 0.14 + 0.0105
204.54 + 0.0105
204.5505 grams
There are 204.5505 grams in 3.5 moles of NaCl.
For the second question, divide 150 (# of grams) by 58.443 (g/mol for NaCl). I'll convert both into fractions.
150/1 * 1000/58443
150000/58443
2.56660336 moles
2.5666 moles (rounded to 4 places to keep consistency with the first answer) are in 150 grams of NaCl.
The equilibrium constant, Kc=0.026
<h3>Further explanation</h3>
Given
1.72 moles of NOCI
1.16 moles of NOCI remained
2.50 L reaction chamber
Reaction
2NOCI(g) = 2NO(g) + Cl2(g).
Required
the equilibrium constant, Kc
Solution
ICE method
2NOCI(g) = 2NO(g) + Cl2(g).
I 1.72
C 0.56 0.56 0.28
E 1.16 0.56 0.28
Molarity at equilibrium :
NOCl :

NO :

Cl2 :

![\tt Kc=\dfrac{[NO]^2[Cl_2]}{[NOCl]^2}\\\\Kc=\dfrac{0.224^2\times 0.112}{0.464^2}=0.026](https://tex.z-dn.net/?f=%5Ctt%20Kc%3D%5Cdfrac%7B%5BNO%5D%5E2%5BCl_2%5D%7D%7B%5BNOCl%5D%5E2%7D%5C%5C%5C%5CKc%3D%5Cdfrac%7B0.224%5E2%5Ctimes%200.112%7D%7B0.464%5E2%7D%3D0.026)
I think it’s 44.6 J, but I’m not to sure so hoped this helped /:).
NaBr + CaF2 → NaF + CaBr2 What coefficients are needed to balance the chemical equation? A) 1,1,1,1 B) 1,2,1,2 C) 1,2,2,1 D) 2,1
elena-s [515]
D.
2NaBr + CaF2 --> 2NaF + CaBr2 gives you:
2Na 2Na
2Br 2F
1Ca 1Ca
2F 2Br
This is balanced.