Distance is 50 km
Displacement is 10 km
<u>Explanation:</u>
Given:
Distance toward south, x = 25 km
Distance towards west, y = 10 km
Distance towards north, z = 15 km
(a) Total distance, D = ?
Total distance, D = x + y + z
D = 25 + 10 + 15
D = 50km
(b) Displacement, d = ?
Displacement = final position - initial position
= 10 - 0 km
= 10km
Hey there! Congratulations on posting your first question! I just want to thank you for taking the initiative to check out Brainly. With Brainly, students combine their strengths and talents to tackle problems together and by answering questions, you’ve helped several students learn even more, both quickly and effectively. If you ever have any questions or concerns feel free to PM me or check out our help center (faq.brainly.com). Thanks!
Answer:
Africa
Explanation:
A rogue wave refers to the wave that is twice the height of a significant wave occurring in a particular area. The significant wave height is generally referred to as the mean of the largest one-third of waves existing at a particular time period. In simple words, a rogue wave is much larger than any other waves that occur at the proximity of the same time.
This rough wave describes the interaction between the ocean and sea current and swelling of waves. It takes place when the large swells in the ocean, also known as the Antarctic storms, strikes with the rapidly traveling Agulhas current, and the curved water current focuses on the energy of the waves.
Thus, these Rogue waves are often generated along the southeastern coastal regions of Africa, where there occurs the convergence of Antarctic storm waves and Agulhas Current.
A billiard ball. unless hit, the balls stay at rest. however when hit into another, the balls do not stop unless acted upon by another force.
Answer:
The final velocity of the bullet is 9 m/s.
Explanation:
We have,
Mass of a bullet is, m = 0.05 kg
Mass of wooden block is, M = 5 kg
Initial speed of bullet, v = 909 m/s
The bullet embeds itself in the block which flies off its stand. Let V is the final velocity of the bullet. The this case, momentum of the system remains conserved. So,

So, the final velocity of the bullet is 9 m/s.