(1) The ball is in the air for <u>1.4 seconds.</u>
(2) The horizontal velocity of the ball as it rolls off the table is<u> 6.32 m/s.</u>
(3) The vertical velocity of the ball right before it hits the ground is <u>13.72 m/s.</u>
(4) The horizontal velocity of the ball right before it hits the ground is<u> 6.32 m/s.</u>
(5) The initial vertical velocity as soon as the ball comes of the cliff is <u>13.72 m/s.</u>
<h3>What is the time of motion of the ball?</h3>
The time of motion of the ball is calculated by applying the following equation.
t = √(2h/g)
where;
- h is the height of the cliff
- g is acceleration due to gravity
t = √(2h/g)
t = √(2 x 9.63 / 9.8)
t = 1.4 seconds
The horizontal velocity of the ball is calculated as follows;
v = d/t
where;
- d is the horizontal distance travelled by the ball = 8.85 m
v = 8.85 m / 1.4 s
v = 6.32 m/s
The vertical velocity of the ball before it hits the ground is calculated as;
vf = vi + gt
vf = 0 + 9.8 x 1.4
vf = 13.72 m/s
The horizontal velocity of the ball right before it hits the ground is calculated as;
the initial velocity of a projectile = final horizontal velocity
vxf = vxi = 6.32 m/s
The initial vertical velocity as soon as the ball comes off the cliff = final vertical velocity = 13.72 m/s
Learn more about horizontal velocity here: brainly.com/question/24949996
#SPJ1
Answer:
4.24m/s,45 degrees in forward direction
Explanation:
0.12244898 is the value obtained when solving the given.
<u>Explanation:</u>
Given:
3 times 10 to the 8th power can be expressed in equation format as
(3 times symbolizes ‘multiplication’ then it is to the tenth power of 8)
2.45 times 10 to the 9th power can be expressed in equation format as
(2.45 times symbolizes ‘multiplication’, then it is to the tenth power of 9)
Asked to find the solution when dividing the above,

When the tenth power of any value goes from denominator to numerator and vice-versa, presents in opposite sign to that it possess (like when ‘
' goes to numerator changed as '
').
Now by solving the above equation, we get

Answer:
Yes, it's true. Computers do work that way. It's experienced by one of the authors of the book how computers work.
Explanation:
Answer:
362.41 km/h
Explanation:
F = Force
m = Mass = 84 kg
g = Acceleration due to gravity = 9.81 m/s²
C = Drag coefficient = 0.8
ρ = Density of air = 1.21 kg/m³
A = Surface area = 0.04 m²
v = Terminal velocity
F = ma

Converting to km/h

The terminal velocity of the stone is 362.41 km/h