Answer:
Boiling Point
Explanation:
When a liquid changes to a gas is called the boiling point.
Answer:
b. There is no definite top to the atmosphere. The pressure and density gradually get smaller as the altitude gets larger.
Explanation:
There is no specific top of the atmosphere. It varies from place to place. But generally it is considered to be 480 kilometers thick. But majority of its thickness is limited to 16 km only above earth surface. The pressure and density gradually get smaller as the altitude gets larger. The air pressure at sea level is 14.7 pounds per square inch and it decreases to 10 pounds per square inch at a height of 3 kilometers. From the above discussion we say that option B is correct
Answer the point I wish you would have the greatest potential energy is when you are coming down the swing and getting ready to go up the greatest kinetic energy is whenever you’re falling back down from the height of how far you went up
Answer:
a. d₁/d₂ = 1.09 b. 0.054 mW
Explanation:
a. What is the ratio of the diameter of the first student's eardrum to that of the second student?
We know since the power is the same for both students, intensity I ∝ I/A where A = surface area of ear drum. If we assume it to be circular, A = πd²/4 where r = radius. So, A ∝ d²
So, I ∝ I/d²
I₁/I₂ = d₂²/d₁² where I₁ = intensity at eardrum of first student, d₁ = diameter of first student's eardrum, I₂ = intensity at eardrum of second student, d₂ = diameter of second student's eardrum.
Given that I₂ = 1.18I₁
I₂/I₁ = 1.18
Since I₁/I₂ = d₂²/d₁²
√(I₁/I₂) = d₂/d₁
d₁/d₂ = √(I₂/I₁)
d₁/d₂ = √1.18
d₁/d₂ = 1.09
So, the ratio of the diameter of the first student's eardrum to that of the second student is 1.09
b. If the diameter of the second student's eardrum is 1.01 cm. how much acoustic power, in microwatts, is striking each of his (and the other student's) eardrums?
We know intensity, I = P/A where P = acoustic power and A = area = πd²/4
Now, P = IA
= I₂A₂
= I₂πd₂²/4
= 1.18I₁πd₂²/4
Given that I₁ = 0.58 W/m² and d₂ = 1.01 cm = 1.01 × 10⁻² m
So, P = 1.18I₁πd₂²/4
= 1.18 × 0.58 W/m² × π × (1.01 × 10⁻² m)²/4
= 0.691244π × 10⁻⁴ W/4 =
2.172 × 10⁻⁴ W/4
= 0.543 × 10⁻⁴ W
= 0.0543 × 10⁻³ W
= 0.0543 mW
≅ 0.054 mW
Answer:
a baseball player swinging a bat and hitting a baseball, causing the bat to shatter
Explanation
took the test, hope it helps