The correct answer to this question is false
Answer:
This is an attempt to more clearly visualize the nature of single slit diffraction. The phenomenon of diffraction involves the spreading out of waves past openings which are on the order of the wavelength of the wave.
Explanation:
Answer:
Atoms of tellurium (Te) have the greatest average number of neutrons equal to 76.
Explanation:
In the periodic table, Elements are represented with their respected symbols. Above the symbol is the elements atomic number which is equal to the number of protons in each atom. Below the symbol is the mass number of that element which is roughly equal to the sum of neutrons and protons of that atom.
To calculate the number of neutrons we can take the difference of Atomic number and mass number:
Number of neutrons = mass number - atomic number
<u>- Tin:</u>
Atomic number = 50
Mass number = 119
Number of neutrons = mass number - atomic number = 119 - 50
Number of neutrons = 69
<u>- Antimony(Sb):</u>
Atomic number = 51
Mass number = 122
Number of neutrons = mass number - atomic number = 122 - 51
Number of neutrons = 71
<u>- Tellurium(Te):</u>
Atomic number = 52
Mass number = 128
Number of neutrons = mass number - atomic number = 128 - 52
Number of neutrons = <u>76</u>
<u>- Iodine(I):</u>
Atomic number = 53
Mass number = 127
Number of neutrons = mass number - atomic number = 127 - 53
Number of neutrons = 74
Here, the greatest number of neutrons is for the atoms of Tellurium(Te).
Answer:
m₁ / m₂ = 1.3
Explanation:
We can work this problem with the moment, the system is formed by the two particles
The moment is conserved, to simulate the system the particles initially move with a moment and suppose a shock where the particular that, without speed, this determines that if you center, you should be stationary, which creates a moment equal to zero
p₀o = m₁ v₁ + m₂ v₂
pf = 0
m₁ v₁ + m₂ v₂ = 0
m₁ / m₂ = -v₂ / v₁
m₁ / m₂= - (-6.2) / 4.7
m₁ / m₂ = 1.3
Another way to solve this exercise is to use the mass center relationship
Xcm = 1/M (m₁ x₁ + m₂ x₂)
We derive from time
Vcm = 1/M (m₁ v₁ + m₂v₂)
As they say the velocity of the center of zero masses
0 = 1/M (m₁ v₁ + m₂v₂)
m₁ v₁ + m₂v₂ = 0
m₁ / m₂ = -v₂ / v₁
m₁ / m₂ = 1.3