<span>your answer is Ca3</span>(PO4)2<span>, </span>
The molarity of a solution that contains 35.00 g of CuSO4 dissolved in 250.0 mL of water is 0.88M.
<h3>How to calculate molarity?</h3>
The molarity of a solution can be calculated using the following formula:
Molarity = no of moles/volume
According to this question, a solution consists of 35.00 g of CuSO4 dissolved in 250.0 mL of water.
no.of moles of CuSO4 = 35g ÷ 159.6g/mol
no. of moles of CuSO4 = 0.22 moles
Therefore; molarity of CuSO4 solution is calculated as follows:
M = 0.22 ÷ 0.25
M = 0.88M
Therefore, the molarity of a solution that contains 35.00 g of CuSO4 dissolved in 250.0 mL of water is 0.88M.
Learn more about molarity at: brainly.com/question/12127540
Answer:

Explanation:
The breakdown reaction of ozone is as follows




It can be seen that 2 moles of ozone is required in the complete cycle
So for 10 cycles, 20 moles of ozone is required
m = Mass of
= 15.5 g
M = Molar mass of
= 104.46 g/mol
P = Pressure = 24.5 mmHg
T = Temperature = 232 K
R = Gas constant = 
Number of moles is given by


From ideal gas law we have

For 20 cycles of the reaction the volume of the ozone is
.
Answer:
O B. Convert the 10 g of NaCl to moles of NaCl.
Explanation:
The formula for finding the molality is m=moles of solute/kg of solvent. The solute for this question is NaCl and the solvent is water.
(10g NaCl)(1 mol NaCl/58.44g NaCl)=0.1711 mol NaCl
58.44 is the molar mass of NaCl
m=0.1711 mol NaCl/2 kg H2O
m=0.085557837