Answer:
69.8 kilo Pasacl is the pressure of the hydrogen gas.
Explanation:

Pressure at which hydrogen gas collected = p = 101.2 kilo Pascals
Vapor pressure water =
= 31.4 kilo Pascals
The pressure of hydrogen gas = P
The pressure at which gas was collected was sum of vapor pressure of water and hydrogen gas.


69.8 kilo Pasacl is the pressure of the hydrogen gas.
Answer:
Fe₂O₃
Explanation:
To solve this question we must find the moles of Iron in 1.68g. With the difference of the masses we can find the moles of oxygen. The formula will be obtained with the ratio of both amount of moles:
<em>Moles Fe:</em>
1.68g * (1mol / 56g) =0.03moles
<em>Moles O:</em>
2.40g-1.68g = 0.72g * (1mol/16g) = 0.045moles
The ratio O/Fe is:
0.045moles / 0.03moles = 1.5 moles. this ratio is obtained if the formula is:
<h3>Fe₂O₃</h3>
The chemical equation would be:
2NO(g) + O2(g) --> 2NO2 (g)
<span>At equilibrium state, the partial pressure of the gases would be as follows : </span>
<span>NO = 522 - 2x </span>
<span>O2 = 421 - x </span>
<span>NO2 = 2x </span>
<span>- - - - - - - - - - - - -</span>
<span>943 - x = 748 </span>
<span>x = 195</span>
Calculating for Kp,
<span>Kp = (NO2)^2/ ((NO)^2 * (O2)) </span>
<span>Kp = (2 * 195)^2/ ((522 - 2 * 195)^2 * (421 - 195)) </span>
<span>Kp = 0.0386 </span>