You'd get an extra 40/60 of the energy, or 2/3. Multiply 5/3 by the required energy to get the actual consumption.
Answer:
lowest frequency = 535.93 Hz
distance between adjacent anti nodes is 4.25 cm
Explanation:
given data
length L = 32 cm = 0.32 m
to find out
frequency and distance between adjacent anti nodes
solution
we consider here speed of sound through air at room temperature 20 degree is approximately v = 343 m/s
so
lowest frequency will be =
..............1
put here value in equation 1
lowest frequency will be =
lowest frequency = 535.93 Hz
and
we have given highest frequency f = 4000Hz
so
wavelength =
..............2
put here value
wavelength =
wavelength = 0.08575 m
so distance =
..............3
distance =
distance = 0.0425 m
so distance between adjacent anti nodes is 4.25 cm
Answer:
33.2 m
Explanation:
For the first object:
y₀ = 81.5 m
v₀ = 0 m/s
a = -9.8 m/s²
t₀ = 0 s
y = y₀ + v₀ t + ½ at²
y = 81.5 − 4.9t²
For the second object:
y₀ = 0 m
v₀ = 40.0 m/s
a = -9.8 m/s²
t₀ = 2.20 s
y = y₀ + v₀ t + ½ at²
y = 40(t−2.2) − 4.9(t−2.2)²
When they meet:
81.5 − 4.9t² = 40(t−2.2) − 4.9(t−2.2)²
81.5 − 4.9t² = 40t − 88 − 4.9 (t² − 4.4t + 4.84)
81.5 − 4.9t² = 40t − 88 − 4.9t² + 21.56t − 23.716
81.5 = 61.56t − 111.716
193.216 = 61.56t
t = 3.139
The position at that time is:
y = 81.5 − 4.9(3.139)²
y = 33.2
Hello, love! The answer is True, or T, on Edge2020.
Hope this helped!
~ V.