Yes that's a true statement. That's why grandmother put a hot water bottle to warm up her bed, and not a hot bar of steel or lead.
Answer:
m = 35.98 Kg ≈ 36 Kg
Explanation:
I₀ = 125 kg·m²
R₁ = 1.50 m
ωi = 0.600 rad/s
R₂ = 0.905 m
ωf = 0.800 rad/s
m = ?
We can apply The law of conservation of angular momentum as follows:
Linitial = Lfinal
⇒ Ii*ωi = If*ωf <em>(I)</em>
where
Ii = I₀ + m*R₁² = 125 + m*(1.50)² = 125 + 2.25*m
If = I₀ + m*R₂² = 125 + m*(0.905)² = 125 + 0.819025*m
Now, we using the equation <em>(I) </em>we have
(125 + 2.25*m)*0.600 = (125 + 0.819025*m)*0.800
⇒ m = 35.98 Kg ≈ 36 Kg
Answer:
0.0675 seconds
Explanation:
From the question,
We apply newton's second law of motion
F = m(v-u)/t.................... Equation 1
Where F = force exert by the brake, v = final speed, u = initial speed m = mass of the bicycle, t = time.
make t the subject of the equation
t = m(v-u)/F................... Equation 2
Given: m = 180 kg, u = 6.0 m/s, v = 0 m/s (comes to stop), F = -1600 N ( agianst the dirction of motion)
Substitute these value into equation 2
t = 180(0-6.0)/-1600
t = -1080/-1600
t = 0.0675 seconds.
Answer:
-6112.26 J
Explanation:
The initial kinetic energy,
is given by
} where m is the mass of a body and
is the initial velocity
The final kinetic energy,
is given by
where
is the final velocity
Change in kinetic energy,
is given by

Since the skater finally comes to rest, the final velocity is zero. Substituting 0 for
and 12.6 m/s for
and 77 Kg for m we obtain

From work energy theorem, work done by a force is equal to the change in kinetic energy hence for this case work done equals <u>-6112.26 J</u>
<em>The velocity vector of an object with a centripetal acceleration is never tangent to the circular path is False.</em>
Answer: <em>False</em>
Explanation:
Centripetal acceleration is a feature of objects in uniform circular motion. In that case velocity is along the tangent drawn to the circular path. For an object to be called accelerating its velocity should be variable but speed needn’t.
Even when the speed is constant an object can be accelerating. The direction of velocity of an object in uniform circular motion keeps changing continuously. This change in velocity in uniform circular motion is equal to the centripetal acceleration.