1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GuDViN [60]
2 years ago
9

If the mass of material is 44 grams and the volume of the material is 8cm^3 what would the density of the material be?

Physics
1 answer:
Alenkasestr [34]2 years ago
6 0

Density = mass ÷ volume

D= 44g ÷ 8 cm^3

D = 5,5 (round it) 6 g/cm^3

You might be interested in
X-rays with an energy of 300 keV undergo Compton scattering from a target. If the scattered rays are detected at 30 relative to
lys-0071 [83]

Answer:

a) \Delta \lambda = \lambda' -\lambda_o = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

b) \lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

c) E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

Explanation

Part a

For this case we can use the Compton shift equation given by:

\Delta \lambda = \lambda' -\lambda_0 = \frac{h}{m_e c} (1-cos \theta)

For this case we know the following values:

h = 6.63 x10^{-34} Js

m_e = 9.109 x10^{-31} kg

c = 3x10^8 m/s

\theta = 37

So then if we replace we got:

\Delta \lambda = \frac{6.63x10^{-34} Js}{9.109 x10^{-31} kg *3x10^8 m/s} (1-cos 37) = 4.885x10^{-13} m * \frac{1m}{1x10^{-15} m}= 488.54 fm

Part b

For this cas we can calculate the wavelength of the phton with this formula:

\lambda_0 = \frac{hc}{E_0}

With E_0 = 300 k eV= 300000 eV

And replacing we have:

\lambda_0 = \frac{1240 x10^{-9} eV m}{300000eV}=4.13 x10^{-12}m = 4.12 pm

And then the scattered wavelength is given by:

\lambda ' = \lambda_0 + \Delta \lambda = 4.13 + 0.489 pm = 4.619 pm

And the energy of the scattered photon is given by:

E' = \frac{hc}{\lambda'}= \frac{1240x10^{-9} eVm}{4.619x10^{-12} m}=268456.37 eV - 268.46 keV

Part c

For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this:

E_f = E_0 -E' = 300 -268.456 kev = 31.544 keV

3 0
3 years ago
Read 2 more answers
A 5.10 kgkg watermelon is dropped from rest from the roof of a 18.5 mm-tall building and feels no appreciable air resistance.
VARVARA [1.3K]

Work done is by the change in the potential energy of the system. The work done by gravity is 924.63 J.

<h3>What is the Kinetic Energy?</h3>
  • Potential energy in physics is the energy that an item retains as a result of its position in relation to other objects, internal tensions, electric charge, or other elements.
  • The gravitational potential energy of an object, which is based on its mass and distance from another object's center of mass, the elastic potential energy of an extended spring, and the electric potential energy of an electric charge in an electric field are examples of common types of potential energy. The joule, denoted by the letter J, is the energy unit in the International System of Units (SI).

Solution:

mass = 5.10 kg

height = 18.5 mm

We know that work done by the gravity on the watermelon is the change in the potential energy of the watermelon, therefore,

Work done due to gravity = change in the potential energy of the system

W = \Delta PE

W = mg (h₀ - h₁)

W = 5.10 × 9.8 × 18.5

W = 924.63 J

know more about potential energy brainly.com/question/24284560

#SPJ4

7 0
1 year ago
A fossil form when an organism buried in sediment dissolves leaving a hollow area
IceJOKER [234]

Answer:

A Mold

Explanation:

A mold forms when hard parts of an organism are buried in sediment; the hard parts completely dissolve over time, leaving behind a hollow area. A cast forms as a result of a mold when minerals and sediment fill in the impression.

3 0
3 years ago
A father wanted to explain how the moon shines to his 5-year old child by comparing it to an object that the child uses. Which s
9966 [12]

Answer:

The moon is like a mirror. It reflects light produced by the Sun

Explanation:

5 0
2 years ago
Read 2 more answers
T or f :static electricity constantly flows in the same direction
Kazeer [188]

Answer:

False

because I got that question and I gotted right

6 0
3 years ago
Other questions:
  • How is the force of gravity mathematically related to the factors<br> that answer Question I?
    7·1 answer
  • An infinite sheet of charge, oriented perpendicular to the x-axis, passes through x = 0. It has a surface charge density σ1 = -2
    10·2 answers
  • PLZZ ANSWER THE QUESTION ​
    6·1 answer
  • if two displacement vectors add to yeild a totsl displacement of zero, what do you know about the two displacements​
    12·1 answer
  • Dolphin echolocation is similar to ultrasound. Reflected sound waves
    9·1 answer
  • What Is The frequency of an X Ray That had A Wavelength of 1.5* 10^-9
    9·1 answer
  • A 43.9-g piece of copper (CCu= 0.385 J/g°C) at 135.0°C is plunged into 254 g of water at 39.0°C. Assuming that no heat is lost t
    8·2 answers
  • Find the color of light whose photon has 4.75x10^-19 J of energy
    10·1 answer
  • A car covers 120 km in 3 hours calculate its speed in m/s​
    10·2 answers
  • A weather balloon is partially inflated with helium gas to a volume of 2.0 m³. The pressure was measured at 101 kPa and the temp
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!