Spring C stretches 100 cm.
Explanation:
The spring constant is simply the stiffness of the spring. The higher the spring constant the more stiff the spring is.
Spring constant shows the force needed to stretch a spring from it's equilibrium position. If a material requires more force to cause it to stretch, it will have a high spring constant.
According to hooke's law "the force needed to extended an elastic material is directly proportional to its extension"
F = ke
k is the spring constant
e is the extension
We see that the spring that stretches by 100 is the less stiff compared to other springs. It has the smallest spring constant.
Learn more;
Force brainly.com/question/8882476
#learnwithBrainly
Part A:
For this part we’re assuming all the kinetic energy of the moving bumper car is converted into elastic potential energy in the spring since the car is brought to rest. Therefore you can find the total kinetic energy to get your answer:
KE = ½ mv^2
KE = ½ (200)(8)^2
KE = 6400 J
Part B:
Now you can use Hooke’s law to find the force:
F = kx
F = (5000)(0.2)
F = 1000 N
Answer: Option D: 5.5×10²Joules
Explanation:
Work done is the product of applied force and displacement of the object in the direction of force.
W = F.s = F s cosθ
It is given that the force applied is, F = 55 N
The displacement in the direction of force, s = 10 m
The angle between force and displacement, θ = 0°
Thus, work done on the object:
W = 55 N × 10 m × cos 0° = 550 J = 5.5 × 10² J
Hence, the correct option is D.
Answer:

Explanation:
Btu of British thermal unit is a unit of heat. The relation between btu/year and watts is given by :

So,
is equal to 11 kW. Hence, the correct option is (d).
Answer: = 5.75 × 10 -6
Explanation:
= 5.75 × 10-6
(scientific notation)
= 5.75e-6
(scientific e notation)
= 5.75 × 10-6
(engineering notation)
(millionth; prefix micro- (u))
= 0.00000575
(real number)