B. climate
this is because it influences the speed of chemical reactions in the soil
Answer : The final equilibrium temperature of the water and iron is, 537.12 K
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of iron = 560 J/(kg.K)
= specific heat of water = 4186 J/(kg.K)
= mass of iron = 825 g
= mass of water = 40 g
= final temperature of water and iron = ?
= initial temperature of iron = 
= initial temperature of water = 
Now put all the given values in the above formula, we get:


Therefore, the final equilibrium temperature of the water and iron is, 537.12 K
Answer:
The conversion achieved for the first CSTR impeller is 0.382
Discrepancy = 0.188
Explanation:
The impeller divides the CSTR into 2 equal reactors of volume 500gal
Using V = FaoX/ (-ra)
500gal = Fao×Xa/[(KCao^2( 1 -X1)^2]
500gal = CaoVoX1/ KCao^2(1-X1)
500gal= 500gal × X1'/(1 - X1)^2
(1 -X1)^2 = X1
X1^2 - 3X1 + 1 = 0
X1= 0.382
Conversion achieved in the first CSTR is 0.382
Actual measured CSTR = 57% =57/100=0.57
Discrepancy in the conversions= 0.57 -0.383 =0.188
Answer : The internal energy change is -2805.8 kJ/mol
Explanation :
First we have to calculate the heat gained by the calorimeter.

where,
q = heat gained = ?
c = specific heat = 
= final temperature = 
= initial temperature = 
Now put all the given values in the above formula, we get:


Now we have to calculate the enthalpy change during the reaction.

where,
= enthalpy change = ?
q = heat gained = 23.4 kJ
n = number of moles fructose = 

Therefore, the enthalpy change during the reaction is -2805.8 kJ/mole
Now we have to calculate the internal energy change for the combustion of 1.501 g of fructose.
Formula used :

or,

where,
= change in enthalpy = 
= change in internal energy = ?
= change in moles = 0 (from the reaction)
R = gas constant = 8.314 J/mol.K
T = temperature = 
Now put all the given values in the above formula, we get:




Therefore, the internal energy change is -2805.8 kJ/mol