Answer:
C) to show that atoms are conserved in chemical reactions
Explanation:
When writing a chemical reaction, we should always consider the Mass Conservation Law, which basically states that; in an isolated system; the total mass should remain constant, this is, the total mass of the reactives should be equal to the total mass of the products
For this case, we should add the apporpiate coefficients in order to be in compliance with this law:
2H₂ + O₂ → 2H₂O
So, we can check the above statement:
For reactives (left side):
4H
2O
For product (right side):
4H
2O
Answer:

Explanation:
Hello,
In this case, since the undergoing chemical reaction is:

The corresponding moles of carbon dioxide occupying 40.0 mL (0.0400 L) are computed by using the ideal gas equation at 273.15 K and 1.00 atm (STP) as follows:

Then, since the mole ratio between carbon dioxide and calcium carbonate is 1:1 and the molar mass of the reactant is 100 g/mol, the mass that yields such volume turns out:

Regards.
Answer:
Answers
1.)reactants: nitrogen and hydrogen; product: ammonia.
2.)reactants: magnesium hydroxide and nitric acid; products: magnesium nitrate and water.
3.)N 2 + 3H 2 → 2NH 3
4.)Mg(OH) 2 + 2HNO 3 → Mg(NO 3) 2 + 2H 2O.
5.)2NaClO 3 → 2NaCl + 3O 2
6.)4Al + 3O 2 → 2Al 2O 3
7.)N 2(g) + 3H 2(g) → 2NH 3(g)
Explanation:
''.''
Answer:
Volcanoes cool off the earth by emitting heat from its interior. They also add islands and for example, Hawaii was created / is made out of volcanoes. The deposits from volcanoes can also be used for building materials. Volcanic explosions have caused the atmosphere and oceans to form. Volcanic deposits also create land which is fertile.
Answer:
See Explanation
Explanation:
An ionic bond occurs due to electrostatic attraction between a positively charged ion and a negatively charged ion.
A metal and a ligand are bound by a coordinate covalent bond or a dative bond. This bond occurs due to donation of electron pairs from ligands to available orbitals on metals.
The formation of coordinate bonds is evident when neutral molecules or negative ions with non bonding electrons donate same to empty metal orbitals. This is sometimes shown by an arrow pointing from the ligands to the metal center.
For instance; tetraammine copper II ion is formed when four ammonia molecules donate a lone pair each to available vacant orbitals of the copper metal center to form [Cu(NH3)4]^2+.