Answer:
The symbol of isotopes used for blood flow analysis is
<u>Explanation:
</u>
- Isotopes are the substances that exhibit the same atomic number but has a different mass number of an element.
- The atomic number explains the number of protons present in the element and mass number explains the number of neutrons available in the element.
- For blood flow analysis, the isotope element is cerium-141 and it is used in the chemical examination of blood flow particles.
- Symbol used for this isotope is
, where 141 indicates the amount of mass present and 58 indicates the proton number and 83 indicates neutron number present in that element.
- The amount of mass in an atom is calculated by the sum of protons and neutrons present in it. Thus mass of isotope is 141 obtained by the sum of 58 protons and 83 neutrons present in that isotope.
Density= mass/volume
step one :
convert m3 to ml
1m^3 =1000000ml
0.250m^3 x1000000=250000ml
step two: convert mg to g
1mg=0.001g, therefore 4.25 x108mg=0.459g
density is therefore= 0.459g/250000=1.836 x10^-6g/ml
Answer:
im sorry im bored can we talk
Explanation:
lol
The number of moles of silver oxide (I) needed to produce 4 moles of silver is 2 moles
<h3>Stoichiometry </h3>
From the question, we are to determine the number of moles of silver oxide (I) needed to produce 4 moles of silver
First, we will write the balaced chemical equation for the decomposition of silver oxide (I)
2Ag₂O(s) → 4Ag(s) + O₂(g)
This means, 2 moles of silver oxide (I) [Ag₂O] decomposes to give 4 moles of <u>silver </u>and 1 mole of oxygen gas.
From the <em>balanced chemical equation</em>, it is easy to deduce the number of moles of silver oxide (I) that would give 4 moles of silver.
Hence, the number of moles of silver oxide (I) needed to produce 4 moles of silver is 2 moles
Learn more on Stoichiometry here: brainly.com/question/18834543