The properties of alloys most resemble metal. Copper, tin, fiberglass.
Answer:
a) Measurements have a good precision.
Explanation:
Accuracy is the proximity of the data to the value considered as real, in this situation we do not know the real value and we do not know if the data is accurate or not, so we can discard options b and d.
Now, precision is the proximity of the data obtained among themselves and that is what we can observe, so the appropriate answer is the option a.
The answer is yes. A chemical change occurred.
Chemical change is defined as the rearrangement or alteration in the of atoms in one or more substance which result in the formation of a new substance.
In the above, you mixed two clear liquids and the result was a new substance which is a colored solid precipitate at the bottom of the beaker.
This means that changes in the atoms of the two clear liquids occurred leading to the formation of this new solid substance.
This means that chemical change has occurred.
Hope this helps :)
Answer:
4.5 kilograms of silicon dioxide is required to produce 3.00 kg of SiC.
Explanation:
The balanced equation for the reaction between silicon dioxide and carbon at high temperature is given as:

1 mole silicon dioxide reacts with 3 moles of carbon to give 1 moles of silicon carbide and 2 moles of carbon monoxide.
Mass of SiC = 3.00kg = 3000.00 g
1 kg = 1000 g
Molecular mass of SiC = 40 g/mol
Moles of SiC = 
According to reaction, 1 mole of SiC is produced from 1 mole of silicon dioxide.
Then 75 moles of SiC will be produce from:
of silicon dioxide.
mass of 75 moles of silicon dioxde:

4.5 kilograms of silicon dioxide is required to produce 3.00 kg of SiC.
<span>Well it depends on percentage by what, but I'll just assume that it's percentage by mass.
For this, we look at the atomic masses of the elements present in the compound.
Cu has an atomic mass of 63.546 amu
Fe has 55.845 amu
and S has 36.065 amu
Since there are 2 molecules of Sulfur for each one of Cu and Fe, we'll multiply the Sulfur atomic weight by 2 to obtain 72.13 amu
So we have not established the mass of the compound in amus
63.546 + 55.845 + 72.13 = 191.521
That is the atomic mass of Chalcopyrite. and Iron's atomic mass is 55.845
So to get the percentage, or fraction of iron, we take 55.845 / 191.521
Which comes out to 29.15% by mass
Mass of the sample is not needed for this calculation, but since the question mentions it I would go ahead and check if the question isn't also asking for the mass of Iron in the sample as well, in which case you just find the 29.15% of 67.7g</span>