<span>A: best time to go fishing at sea</span>
Use the ideal gas equation PV=nRT. You can compare before and after using P1V1/n1T1=P2V2/n2T2. Since the number of moles remains constant you can disregard moles from the equation and use pressure, volume and temp. Make sure your pressure is converted to atmospheres, your volume is in liters, and your temperature is in kelvins.
Copper substance cannot be decomposed by a chemical change.
<h3 />
- When heated, the copper to carbonate breaks down into copper to oxide. The copper carbonate, which is dark in colour, releases carbon dioxide as well.Because they are the simplest chemically, elements cannot be broken down by chemical processes.
- Elements are those pure compounds that cannot be broken down by reactions, heating, electrolysis, or other common chemical processes. Examples of elements are oxygen, gold, and silver. Its makeup stays the same, though. One instance of a physical change is melting. A physical change is when a sample of matter experiences a change in some of its qualities but not in its identity. Water turns into water vapour when it is heated.
Learn more about copper here:
brainly.com/question/493292
#SPJ4
Answer:
Fe₂O₃ and C are reactants
Fe and CO₂ are products
Explanation:
Reactants:
Chemical species that are present on left side of chemical reaction equation are called reactants.
Product:
Chemical species that are present on right side of chemical reaction equation are called product.
Chemical equation:
2Fe₂O₃ + 3C → 4Fe + 3CO₂
In this reaction 2 mole of iron oxide is react with three moles of carbon and produced four moles of iron and three moles of carbon dioxide. There are equal numbers of atoms of all elements present on both side of chemical reaction so this reaction follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
In this item, I supposed, that we are determine the molar fraction of oxygen and carbon dioxide in the sample. This can be done by dividing their respective partial pressures by the total pressure of the sample.
O2 : mole fraction = (100.7 mmHg) / (763.00 mmHg) = 0.13
CO2 : mole fraction = (33.57 mmHg) / (763.00 mmHg) = 0.044
Answers: O2 = 0.13
CO2 = 0.044