Answer:
What is the problem?
Who has the problem?
Where does the problem occur?
When does the problem occur?
How often does the problem occur?
What causes the problem?
What does the problem impact?
Explanation:
A. homogeneous
b. homogeneous
c. homogeneous.
d. <span>heterogenous
e. heterogeneous
f. heterogeneous</span>
Answer: The balanced equation for overall reaction is:
(CH3)3AuPH3 ----> C2H6 + (CH3)AuPH3
Explanation:
The reaction mechanism is given as follows:
Step 1: (CH3)3AuPH3 ↔ (CH3)3Au + PH3 (fast)
Step 2: (CH3)3Au → C2H6 + (CH3)Au (slow)
Step 3: (CH3)Au + PH3 → (CH3)AuPH3 (fast)
To balance this equation, firstly, we conduct proper atom count for each steps of the reaction mechanism.
It is important to note that for a reaction that involves several steps, the rate law is normally derived from the slow step ( which is step2 from the above mechanism).
Therefore, the balanced chemical equation for the overall reaction is:
(CH3)3AuPH3 ----> C2H6 + (CH3)AuPH3
Answer: There is a single covalent bond in a chlorine molecule.
Explanation: The chlorine molecule is represented as Cl−Cl, i.e. C
l2. Between the chlorine atoms, 2 electrons overlap to form a region of high electron density to which the positively charged chlorine nuclei are attracted, such that internuclear repulsion is negated and a net attractive force results. Because the bonding electrons are shared between the nuclei, we conceive that each atom has 8 valence electrons.
Of course, on reaction with sodium, the sodium reduces the chlorine molecule to give 2×Cl−. The resultant bond between Na+ and Cl−is ionic and a non-molecular substance results.
You can call me Kat ᓚᘏᗢ