Answer:
Density, melting point. and magnetic properties
Explanation:
I can think of three ways.
1. Density
The density of Cu₂S is 5.6 g/cm³; that of CuS is 4.76 g/cm³.
It should be possible to distinguish these even with high school equipment.
2. Melting point
Cu₂S melts at 1130 °C (yellowish-red); CuS decomposes at 500 °C (faint red).
A Bunsen burner can easily reach these temperatures.
3. Magnetic properties
You can use a Gouy balance to measure the magnetic susceptibilities.
In Cu₂S the Cu⁺ ion has a d¹⁰ electron configuration, so all the electrons are paired and the solid is diamagnetic.
In CuS the Cu²⁺ ion has a d⁹ electron configuration, so all there is an unpaired electron and the solid is paramagnetic.
A sample of Cu₂S will be repelled by the magnetic field and show a decrease in weight.
A sample of CuS will be attracted by the magnetic field and show an increase in weight.
In the picture below, you can see the sample partially suspended between the poles of an electromagnet.
Explanation:
The mass of an object is a measure of the object's inertial property, or the amount of matter it contains. The weight of an object is a measure of the force exerted on the object by gravity, or the force needed to support it. The pull of gravity on the earth gives an object a downward acceleration of about 9.8 m/s2.
D, the rate increases as concentrations increase.
Typically, reaction rates decrease with time because reactant concentrations decrease as reactions are converted to products. Reaction rates generally increase when reactant concentrations are increased.
Answer:
The answer to your question is U-234
Explanation:
Data
Thorium-234
beta emission twice
Definition
Beta emission is when a beta particle (electron) is emitted from an atomic nucleus.
First beta emission
²³⁴₉₀Th ⇒ ²³⁴₉₁Pa + e⁻
Second beta emission
²³⁴₉₁ Pa ⇒ ²³⁴₉₂U + e⁻
The atom will be Uranium-324
Collision theory states that the rate of a chemical reaction is proportional to the number of collisions between reactant molecules. The more often reactant molecules collide, the more often they react with one another, and the faster the reaction rate