<u>Answer:</u> The concentration of the solution is 0.25 M
<u>Explanation:</u>
Let the volume of solution of 2.5 M NaCl be 10 mL
We are given:
Dilution ratio = 1 : 10
So, the solution prepared will have a volume of = 
To calculate the molarity of the diluted solution, we use the equation:
where,
are the molarity and volume of the concentrated NaCl solution
are the molarity and volume of diluted NaCl solution
We are given:
Putting values in above equation, we get:

Hence, the concentration of the solution is 0.25 M
Explanation:
Use the density formula to determine the volume of the piece of metal.
density
=
mass
volume
Rearrange the equation to isolate volume.
volume
=
mass
density
volume
=
147
g
7.00
g
mL
=
21.0 mL
The final volume in the cylinder after adding the piece of metal is
20.0 mL
+
21.0 mL
=
41.0 mL
On point? Do you have any options?
V = 60.0 g/ 0.70 g/mL = 85.7 mL Hope this helps! ;D
Answer : The enthalpy of the reaction = -1839.6 KJ
Solution : Given,
= -520.0 KJ/mole
= -1699.8 KJ/mole
The balanced chemical reaction is,

Formula used :


We know that the standard enthalpy of formation of the element is equal to Zero.
Therefore, the enthalpy of formation of (Mn) and (Al) is equal to zero.
Now, put all the values in above formula, we get
![\Delta (H_{f})_{reaction}=[2moles\times (-1699.8 KJ/mole)}+3moles\times (0\text{ KJ/mole}})]-[(3moles\times(-520.0KJ/mole }+4moles\times(0\text{ KJ/mole})]](https://tex.z-dn.net/?f=%5CDelta%20%28H_%7Bf%7D%29_%7Breaction%7D%3D%5B2moles%5Ctimes%20%28-1699.8%20KJ%2Fmole%29%7D%2B3moles%5Ctimes%20%280%5Ctext%7B%20KJ%2Fmole%7D%7D%29%5D-%5B%283moles%5Ctimes%28-520.0KJ%2Fmole%20%7D%2B4moles%5Ctimes%280%5Ctext%7B%20KJ%2Fmole%7D%29%5D)
= (-3399.6) + (1560)
= -1839.6 KJ