Answer:
94.13 ft/s
Explanation:
<u>Given:</u>
= time interval in which the rock hits the opponent = 10 s - 5 s = 5 s
= distance to be moved by the rock long the horizontal = 98 yards
= displacement to be moved by the rock during the time of flight along the vertical = 0 yard
<u>Assume:</u>
= magnitude of initial velocity of the rock
= angle of the initial velocity with the horizontal.
For the motion of the rock along the vertical during the time of flight, the rock has a constant acceleration in the vertically downward direction.

Now the rock has zero acceleration along the horizontal. This means it has a constant velocity along the horizontal during the time of flight.

On dividing equation (1) by (2), we have

Now, putting this value in equation (2), we have

Hence, the initial velocity of the rock must a magnitude of 94.13 ft/s to hit the opponent exactly at 98 yards.
True.
<span>Scientist use conversion factors to express the given value of a unit different type of unit</span>
Answer:
<h2>FUNDAMENTAL UNITS INVOLVED ARE : NEWTON AND SECOND .</h2>
<h2>FORMULA OF PRESSURE = </h2>
<h2>P=F/A </h2>
A wooden log is displaced to a distance of 20m in 10 seconds by applying 500N effort . Calculate the workdone and power...
Solution,
displacement = 20 m
time = 10 sec
force = 500 N
work done = ?
power = ?
Now ,
work done = f × s
= 500 N × 20 m
= 10000 j
Now ,

~nightmare 5474~
Answer:
-6.6 km/h
Explanation:
In 7hr plane travelled 2020km;
For the first 4hr the average speed was 310km/h;
d=st, s=d/t;
Distance covered in first 4h is d = 310km/h×4h = 1240km;
See the image attached for further solution