1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DENIUS [597]
3 years ago
13

The rate at which charge passes through a 6 Ω resistor at a given point in time is 3 mA. How much charge passes through this res

istor in 5 seconds?
Physics
1 answer:
Elza [17]3 years ago
8 0

Answer:

Q = 0.015 Coulombs

Explanation:

Given the following data;

Resistance = 6 Ω

Current = 3 mA = 0.003 A

Time, t = 5 seconds

To find the quantity of charge passing through the resistor;

Mathematically, quantity of charge is given by the formula;

Quantity of charge, Q = current * time

Q = 0.003 * 5

Q = 0.015 Coulombs

You might be interested in
The process of wind blowing sand from one location to another is called
lesya [120]

Answer:

weathering

Explanation:

3 0
3 years ago
Read 2 more answers
Find the quantity of heat needed
krok68 [10]

Answer:

Approximately 3.99\times 10^{4}\; \rm J (assuming that the melting point of ice is 0\; \rm ^\circ C.)

Explanation:

Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

\begin{aligned}m&= 100\; \rm g \times \frac{1\; \rm kg}{1000\; \rm g} \\ &= 0.100\; \rm kg\end{aligned}

The energy required comes in three parts:

  • Energy required to raise the temperature of that 0.100\; \rm kg of ice from (-10\; \rm ^\circ C) to 0\; \rm ^\circ C (the melting point of ice.)
  • Energy required to turn 0.100\; \rm kg of ice into water while temperature stayed constant.
  • Energy required to raise the temperature of that newly-formed 0.100\; \rm kg of water from 0\; \rm ^\circ C to 10\;\ rm ^\circ C.

The following equation gives the amount of energy Q required to raise the temperature of a sample of mass m and specific heat capacity c by \Delta T:

Q = c \cdot m \cdot \Delta T,

where

  • c is the specific heat capacity of the material,
  • m is the mass of the sample, and
  • \Delta T is the change in the temperature of this sample.

For the first part of energy input, c(\text{ice}) = 2100\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (0\; \rm ^\circ C) - (-10\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_1 &= c(\text{ice}) \cdot m(\text{ice}) \cdot \Delta T\\ &= 2100\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 2.10\times 10^{3}\; \rm J\end{aligned}.

Similarly, for the third part of energy input, c(\text{water}) = 4200\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (10\; \rm ^\circ C) - (0\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_3&= c(\text{water}) \cdot m(\text{water}) \cdot \Delta T\\ &= 4200\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 4.20\times 10^{3}\; \rm J\end{aligned}.

The second part of energy input requires a different equation. The energy Q required to melt a sample of mass m and latent heat of fusion L_\text{f} is:

Q = m \cdot L_\text{f}.

Apply this equation to find the size of the second part of energy input:

\begin{aligned}Q_2&= m \cdot L_\text{f}\\&= 0.100\; \rm kg \times 3.36\times 10^{5}\; \rm J\cdot kg^{-1} \\ &= 3.36\times 10^{4}\; \rm J\end{aligned}.

Find the sum of these three parts of energy:

\begin{aligned}Q &= Q_1 + Q_2 + Q_3 = 3.99\times 10^{4}\; \rm J\end{aligned}.

3 0
3 years ago
The astronomer who was imprisoned by the church for announcing his scientific discoveries was Brahe Galileo Aristotle Copernicus
tekilochka [14]

Answer:

galileo

Explanation:

4 0
3 years ago
Read 2 more answers
Keeping the mass at 1.0 kg and the velocity at 10.0 m/s, record the magnitude of centripetal acceleration for each given radius
Paha777 [63]

Answer:

The centripetal acceleration for the first radius; 2.0 m = 50 m/s²

The centripetal acceleration for the second radius; 4.0 m = 25 m/s²

The centripetal acceleration for the third radius; 6.0 m = 16.67 m/s²

The centripetal acceleration for the fourth radius; 8.0 m = 12.5 m/s²

The centripetal acceleration for the fifth radius; 10.0 m = 10 m/s²

Explanation:

Given;

mass of the object, m = 1 kg

velocity of the object, v = 10 m/s

different values of the radius, 2.0 m 4.0 m 6.0 m 8.0 m 10.0 m

The centripetal acceleration for the first radius; 2.0 m

a_c = \frac{v^2}{r} \\\\a_c_1= \frac{(10)^2}{2} \\\\a_c_1= 50 \ m/s^2

The centripetal acceleration for the second radius; 4.0 m

a_c_2= \frac{(10)^2}{4} \\\\a_c_2= 25 \ m/s^2

The centripetal acceleration for the third radius; 6.0 m

a_c_3= \frac{(10)^2}{6} \\\\a_c_3= 16.67 \ m/s^2

The centripetal acceleration for the fourth radius; 8.0 m

a_c_4= \frac{(10)^2}{8} \\\\a_c_4= 12.5 \ m/s^2

The centripetal acceleration for the fifth radius; 10.0 m

a_c_5= \frac{(10)^2}{10} \\\\a_c_5= 10 \ m/s^2

6 0
3 years ago
The period T of a pendulum of length L is measured to determine g at the surface of Earth. The equation used is T=2π√L/g. The ma
saul85 [17]

Answer:

C: Variation in the value of g as the pendulum bob moves along its arc.

Explanation:

The formula for period of a simple pendulum is given by;

T = 2π√(L/g)

Where;

L is length

g is acceleration due to gravity

Now, from this period equation, it is clear that the only thing that can affect the period of a simple pendulum are changes to its length and acceleration due to gravity.

Looking at the options, the only one that talks about either the length or gravity as being potential causes of the error is option C

4 0
3 years ago
Other questions:
  • A magnesium surface has a work function of 3.60 eV. Electromagnetic waves with a wavelength of 320 nm strike the surface and eje
    14·1 answer
  • in a historical movie, two knights on horseback start from rest at 88.0 m spartans ride directly toward each other to do battle.
    10·1 answer
  • Which elements are metalloids
    13·1 answer
  • 60 kilometers in 4 hours, what is the average speed?​
    9·1 answer
  • What is the kinetic energy of a baseball moving at a speed of 40 m/s if the baseball has mass of 0.15 kg?
    8·2 answers
  • The part of the mantle called the ___ is made out of soft rock that bends like plastic
    12·1 answer
  • An airplane flies 33 m/s due east while experiencing a tailwind
    13·1 answer
  • A 1.0 ball moving at 2.0 / perpendicular to a wall rebounds from the wall at 1.5 /. If the ball was in contact with the wall for
    7·1 answer
  • A 2.0-kg pistol fires a 1.0-g bullet with a muzzle speed of 1000 m/s. The bullet then strikes a 10-kg wooden block resting on a
    13·1 answer
  • Why a hole at the bottom of a ship is more dangerous than the one that is near the surface?​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!