.012 J is going to be your answer
Answer:
Explanation:
Given
Initial velocity u = 200m/s
Final velocity = 4m/s
Distance S = 4000m
Required
Acceleration
Substitute the given parameters into the formula
v² = u²+2as
4² = 200²+2a(4000)
16 = 40000+8000a
8000a = 16-40000
8000a = -39,984
a = - 39,984/8000
a = -4.998m/s²
Hence the acceleration is -4.998m/s²
Answer:
the wind carries abrasive materials
Explanation:
such as sand and salt over time theses small particles slowly strip way at the land form sculpting it by eroding the softer layers first
A) 140 degrees
First of all, we need to find the angular velocity of the Ferris wheel. We know that its period is
T = 32 s
So the angular velocity is

Assuming the wheel is moving at constant angular velocity, we can now calculate the angular displacement with respect to the initial position:

and substituting t = 75 seconds, we find

In degrees, it is

So, the new position is 140 degrees from the initial position at the top.
B) 2.7 m/s
The tangential speed, v, of a point at the egde of the wheel is given by

where we have

r = d/2 = (27 m)/2=13.5 m is the radius of the wheel
Substituting into the equation, we find

The additional force needed to bring the car into equilibrium is frictional force.