Answer:
The comparisons are;
The height of the bromine in the 50 ml beaker will be twice that of the 100 ml beaker
The measurement of the volume with the 50 ml beaker will be more accurate than the measurement taken with the 100 ml beaker, because the differences in the height of the bromine in the 50 ml beaker is more obvious than the differences measured with the 100 ml beaker.
The actual volume of bromine in both beakers will be equivalent
Explanation:
The properties of a liquid are;
1) The volume of a liquid is relatively fixed at conditions that are suitable for it to remain in the liquid state compared to the volume occupied by a gas
2) A liquid will assume the shape of a container in which it is placed
3) The surface of a liquid in a container is flat due in order that the attractive forces between the molecules of the liquid at the surface and inside the body of the liquid should be in equilibrium
Therefore, given that the volume of the Bromine is measured in 50 ml beaker and a 100 ml beaker, there will be differences in the measured height of the same volume of bromine in each beaker.
Answer:
i. 43.5 mH ii. 16 Ω. In phasor form Z = (8.33 + j13.66) Ω iii 58.64°
Explanation:
i. The resistance , R of the non-inductive load R = 125 V/15 A = 8.33 Ω
The reactance X of the inductor is X = 2πfL where f = frequency = 50 Hz.
So, x = 2π(50)L = 100πL Ω = 314.16L Ω
Since the current is the same when the 240 V supply is applied, then
the impedance Z = √(R² + X²) = 240 V/15 A
√(R² + X²) = 16 Ω
8.33² + X² = 16²
69.3889 + X² = 256
X² = 256 - 69.3889
X² = 186.6111
X = √186.6111
X = 13.66 Ω
Since X = 314.16L = 13.66 Ω
L = 13.66/314.16
= 0.0435 H
= 43.5 mH
ii. Since the same current is supplied in both circuits, the impedance Z of the circuit is Z = 240 V/15 A = 16 Ω.
So in phasor form Z = (8.33 + j13.66) Ω
iii. The phase difference θ between the current and voltage is
θ = tan⁻¹X/R
= tan⁻¹(314.16L/R)
= tan⁻¹(314.16 × 0.0435 H/8.33 Ω)
= tan⁻¹(13.66/8.33)
= tan⁻¹(1.6406)
= 58.64°
Answer:
current in series is 2.50 mA
current in parallel is 13.51 mA
Explanation:
given data
voltage = 5 V
resistors R1 = 1.5 kilo ohms
resistors R2 = 0.5 kilo ohms
to given data
current flow
solution
current flow in series is express as here
current = voltage / resistor .................1
put here all value in equation 1
current = 5 / (1.5 + 0.5)
current = 5 / 2.0
so current = 2.50 mA
and
current flow in parallel is express as
current = voltage / resistor ....................2
put here all value in equation 2
current = 5 / (1/ (1/1.5 + 1/0.5))
current = 5 / 0.37
so current = 13.31 mA
<span>If there isn't any force then the normal contact force will be
N=m*g=7.5*9.81=73.58N
which is 73.58-23=50.58N less
so, there the person must pull at 23 degree upward
break down the tension in two components, vertical and horizontal.
vertical tension= 50.58=T*sin23
T=50.58/sin23=129.45N</span>
Answer: mammals may be relatively better at solving problems than birds.