Answer:
False
Explanation:
An object's velocity can be described by it's direction. Because velocity is a vector. Besides velocity and acceleration are different units they can't be described by each other.
C or A I may be incorrect but those are what I think it is
Answer:
\text{0.30 cm}^{3} \times \left (\dfrac{10^{-2}\text{ m}}{\text{1 cm}}\right )^{3} = 3.0 \times 10^{-7} \text{ m}^{3}
Explanation:
0.030 cm³ × ? = x m³
You want to convert cubic centimetres to cubic metres, so you multiply the cubic centimetres by a conversion factor.
For example, you know that centi means "× 10⁻²", so
1 cm = 10⁻² m
If we divide each side by 1 cm, we get 1 = (10⁻² m/1 cm).
If we divide each side by 10⁻² m, we get (1 cm/10⁻² m) = 1.
So, we can use either (10⁻² m/1 cm) or (1 cm/10⁻² m) as a conversion factor, because each fraction equals one.
We choose the former because it has the desired units on top.
The "cm" is cubed, so we must cube the conversion factor.
The calculation becomes

Answer:
The answer is "the electron configuration of the element".
Explanation:
Electronics are distributed in atomic and molecular orbit via electrons from an atom or a molecule.
It reflects a most frequent dependence on valence electrons in the outer.
Through analyzing the context of the regular periodic table, the individual atoms are helpful. That's also important to understand chemical connections, which hold electrons together. This similar approach helps to explain the specific characteristics of lasers or semiconductors for bulk materials.