The factors that can determine the outcome of a "neutralization reaction" include:
__________________________________________________________
1) temperature;
2) concentration (of the solution);
3) type of acid used;
4) type of alkali used;
5) type of reaction;
(e.g. whether the reaction is "endothermic" or "exothermic");
_____________________________________________________
The formula used for determining gas pressure, volume and temperature interaction would be PV=nRT.
<span>• What is the temperature in Kelvins?
</span>You already right at this part. Kelvin temperature formula from celsius should be:
K= C+273.15=
<span>K= 27 +273.15 = 300.15
It is important to remember that the formula in this question is using Kelvin unit at temperature, not Celcius or Fahrenheit.
</span>
<span>• Assuming that everything else remains constant, what will happen to the pressure if the temperature decreases to -15 ºC?
</span>In this case, the temperature is decreased from 27C into -15C and you asked the change in the pressure.
Using PV=nRT formula, you can derive that the temperature will be directly related to pressure. If the temperature decreased, the pressure will be decreased too.
<span> If you increase the number of moles to 6 moles, increase temperature to 400K and reduce the volume to 25 L, what will the new pressure be?
</span>PV=nRT
P= nRT/V
P= 6 moles* <span>0.0821 L*atm/(mol*K) * 400K/25L= 7.8816 atm</span>
The electron configuration
1
s
2
2
s
2
2
p
6
3
s
2
3
p
2
is the element Silicon.
The key to deciphering this is to look at the last bit of information of the electron configuration
3
p
2
.
The '3' informs us that the element is in the 3rd Energy Level or row of the periodic table. The 'p' tells us that the element is found in the p-block which are all of the Groups to the right of the transition metals, columns 13-18. The superscript '2' tells us that the element is found in the 2nd column of the p-block Group 14.
Answer:
N₂ + 3H₂ → 2NH₃ ΔH = - 92.2KJ
Explanation:
Let's write out the chemical equation between Nitrogen and Hydrogen to Form Ammonia.
Nitrogen + Hydrogen = Ammonia
N₂ + H₂ → NH₃
A Thermochemical Equation is a balanced stoichiometric chemical equation that includes the enthalpy change, ΔH.
The balanced stoichiometric chemical equation is given as;
N₂ + 3H₂ → 2NH₃
92.2 kJ of energy are evolved for each mole of N2(g) that reacts. And from the equation, 1 mole of N2 reacts.
The enthalpy change, ΔH = - 92.2KJ. The negative sign is because heat is being evolved.
The balanced thermochemical equation;
N₂ + 3H₂ → 2NH₃ ΔH = - 92.2KJ