Answer : The moles of
are, 2.125 mole.
Explanation : Given,
Molarity of
= 8.500 M
Volume of solution = 250 mL = 0.250 L (1 L = 1000 mL)
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

Now put all the given values in this formula, we get:


Therefore, the moles of
are, 2.125 mole.
Hey there!:
If Q = K, it means the reaction is at equilibrium.
The correct statments are as follows:
A. If Q < K, it means the forward reaction will proceed to form more products.
B. If Q > K, it means the backward reaction will proceed to form more reactants.
The statement C is true.
Hope this helps!
Answer:
8.61 mL of the HCl solution
Explanation:
The reaction that takes place is:
- 2HCl + Mg(OH)₂ → MgCl₂ + 2H₂O
From the given mass of Mg(OH)₂, we can calculate <u>the moles of HCl that are neutralized</u>:
- 4x10² mg = 400 mg = 0.400g
- 0.400g Mg(OH)₂ ÷ 58.32g/1mol = 6.859*10⁻³ mol Mg(OH)₂
- 6.859*10⁻³ mol Mg(OH)₂ *
3.429x10⁻³ mol HCl
Finally, to calculate the volume of an HCl solution, we need both the moles and the concentration. We can <u>calculate the concentration using the pH value</u>:
= [H⁺]
- 0.0398 M = [H⁺] = [HCl] *Because HCl is a strong acid*
Thus, the volume is:
- 0.0398 M = 3.429x10⁻³mol HCl / Volume
- Volume = 8.616x10⁻³ L = 8.62 mL
Answer:
a) 30 moles
Explanation:
2C6H6 + 1502 -------> 12CO2 + 6H20
from reaction 2 mol 15 mol
given 4.0 mol x mol
x = 4.0*15/2 = 30. mol