Explanation:
Yes Diesel engine have problem of knocking.
We know that knocking is phenomenon in which suddenly large amount of power generates this large amount of power will cause the failure of diesel engine.
Actually when one set of fuel inject inside the cylinder to burn with already compressed air (in general up to 10-15 bar) then this fuel does not burn complete and accumulate inside the cylinder.After that second set of fuel inject inside the cylinder then that one set of fuel burns with second set of fuel and produces large amount of sudden power for engine and causes the breaks in the crank or connecting rod of engine.it leads to damage the engine.
The answer is B because it could be feasible but it’s not a need it and you got a time frame but it’s not a requirement and it doesn’t have to be unique.
Answer:
That's a really nice question sadly I don't know the answer I'm replying to you cuz I'm tryna get points so... Sorry
Answer:


Explanation:
Considering the one dimensional and steady state:
From Heat Conduction equation considering the above assumption:
Eq (1)
Where:
k is thermal Conductivity
is uniform thermal generation


Putt in Eq (1):

Energy balance is given by:

Eq (2)

Putting x=L


From Eq (2)

Answer:
a. Solid length Ls = 2.6 in
b. Force necessary for deflection Fs = 67.2Ibf
Factor of safety FOS = 2.04
Explanation:
Given details
Oil-tempered wire,
d = 0.2 in,
D = 2 in,
n = 12 coils,
Lo = 5 in
(a) Find the solid length
Ls = d (n + 1)
= 0.2(12 + 1) = 2.6 in Ans
(b) Find the force necessary to deflect the spring to its solid length.
N = n - 2 = 12 - 2 = 10 coils
Take G = 11.2 Mpsi
K = (d^4*G)/(8D^3N)
K = (0.2^4*11.2)/(8*2^3*10) = 28Ibf/in
Fs = k*Ys = k (Lo - Ls )
= 28(5 - 2.6) = 67.2 lbf Ans.
c) Find the factor of safety guarding against yielding when the spring is compressed to its solid length.
For C = D/d = 2/0.2 = 10
Kb = (4C + 2)/(4C - 3)
= (4*10 + 2)/(4*10 - 3) = 1.135
Tau ts = Kb {(8FD)/(Πd^3)}
= 1.135 {(8*67.2*2)/(Π*2^3)}
= 48.56 * 10^6 psi
Let m = 0.187,
A = 147 kpsi.inm^3
Sut = A/d^3 = 147/0.2^3 = 198.6 kpsi
Ssy = 0.50 Sut
= 0.50(198.6) = 99.3 kpsi
FOS = Ssy/ts
= 99.3/48.56 = 2.04 Ans.