The statement '<span>The more particles a substance has at a given temperature, the more thermal energy it has' is true. </span><span>The
kinetic molecular theory of gases has three main laws and one of them is the
average kinetic energy of the particles in a gas. The average kinetic energy of
the gas particles is the behavior and movement it does in the surroundings. It
is directly proportional to temperature wherein if you increase the
temperature, the kinetic energy of a particle also increases. It will also
decrease its movement or its kinetic energy if the temperature lowers. </span>
Answer:
Explanation:
side of the square loop, a = 7 cm
distance of the nearest side from long wire, r = 2 cm = 0.02 m
di/dt = 9 A/s
Integrate on both the sides

i = 9t
(a) The magnetic field due to the current carrying wire at a distance r is given by


(b)
Magnetic flux,





(c)
R = 3 ohm

magnitude of voltage is
e = 1.89 x 10^-7 V
induced current, i = e / R = (1.89 x 10^-7) / 3
i = 6.3 x 10^-8 A
A frog can be many different colours. It appears green under normal 'white' light because it absorbs all the other colours in the light's spectrum apart from green. It reflects the green light back and that is picked up by your eye.
If the light is red, there is no green in the spectrum of the light, only red. So, the red light will be absorbed and there is no green to be reflected back for you to see. Therefore, the frog will not look green.
Answer: 31.33 degrees
Explanation:
The diffraction angles
when we have a slit divided into
parts are obtained by the following equation:
(1)
Where:
is the width of the slit
is the wavelength of the light
is an integer different from zero.
Now, the first-order diffraction angle is given when
, hence equation (1) becomes:
(2)
Now we have to find the value of
:
(3)
We know:

In addition we are told the diffraction grating has 5000 slits per mm, this means:

Substituting the known values in (3):


<u>Finally:</u>
>>>This is the first-order diffraction angle