The answer is V=0.3157=0.32
Answer:
im so confused
Step-by-step explanation:
Answer:
(-2, -3)
Step-by-step explanation:
We assume your system of equations is ...
You can subtract the second equation from the first to get
... (2x -y) -(2x -4y) = (-1) -(8)
... 3y = -9 . . . . . collect terms
... y = -3 . . . . . . divide by 3 . . . . this is sufficient to identify the correct answer
Substituting into the first equation, we have ...
... 2x -(-3) = -1
... 2x = -4 . . . . . add -3
... x = -2 . . . . . . .divide by 2
Now, we're sure the answer is (x, y) = (-2, -3).
Answer:
Step-by-step explanation:
The opposite side (the one not connected to A) = 4
The hypotenuse is 5
The adjacent side needs to be found for the cosine and the tangent.
a^2 + b^2 = c^2
a = opposite side = 4
b = adjacent side = ?
c = hypotenuse = 5
4^2 + x^2 = 5^2
16 + x^2 = 25
x^2 = 25 - 16
x^2 = 9
x = sqrt(9)
x = 3
cos(A) = adjacent / hypotenuse = 3/5
Tan(A) = opposite / adjacent = 4/3
cos(A) + tan(A) = 3/5 + 4/3
cos(A) + tan(A) = 9/15 + 20/15 = 29/15
Answer:
The probability that the student answers at least seventeen questions correctly is .
Step-by-step explanation:
Let the random variable <em>X</em> represent the number of correctly answered questions.
It is provided all the questions have five options with only one correct option.
Then the probability of selecting the correct option is,
There are <em>n</em> = 20 question in the exam.
It is also provided that a student taking the examination answers each of the questions with an independent random guess.
Then the random variable can be modeled by the Binomial distribution with parameters <em>n</em> = 20 and <em>p</em> = 0.20.
The probability mass function of <em>X</em> is:
Compute the probability that the student answers at least seventeen questions correctly as follows:
Thus, the probability that the student answers at least seventeen questions correctly is .