Answer:
The nest must be about 4.15 meters above ground
Explanation:
Use the velocity equation under accelerated motion (acceleration of gravity ):

which for this case has initial velocity = 0 (falls from the nest), final velocity = 9 m/s, and a = 9.8 m/s^2, then we can find the time needed in air while falling to reach the required speed:

We now use this time value to find the distance covered in free fall during 0.92 seconds:

Answer: 72m/1 min and 24 secs
Explanation:
He swims .75m/sec. im pretty sure i got it but let me know and ill help you out if its wrong
Thermo-Electrochemical converter (UTEC) is a thermodynamic cycle that does not account for the Carnot Efficiency.
The Carnot cycle is a hypothetical cycle that takes no account of entropy generation. It is assumed that the heat source and heat sink have perfect heat transfer. The working fluid also remains in the same phase, as opposed to the Rankine cycle, in which the fluid changes phase. A practical thermodynamic cycle, such as the Rankine cycle, would achieve at most 50% of the Carnot cycle efficiency under similar heat source and heat sink temperatures.
<h3>What is Thermo-Electrochemical converter?</h3>
In a two-cell structure, a thermo-electrochemical converter converts potential energy difference during hydrogen oxidation and reduction to heat energy.
It employs the Ericsson cycle, which is less efficient than the Carnot cycle. In a closed system, it converts heat to electrical energy. There are no external input or output devices.
This means there will be no mechanical work to be done, as well as no exhaust. As a result, Carnot efficiency is not taken into account in this cycle. Carnot efficiency is accounted for by other options such as turbine and engine.
Learn more about Thermo-Electrochemical converter here:
brainly.com/question/13040188
#SPJ4
Answer:
The point on the rim
Explanation:
All the points on the disk travels at the same angular speed
, since they cover the same angular displacement in the same time. Instead, the tangential speed of a point on the disk is given by

where
is the angular speed
r is the distance of the point from the centre of the disk
As we can see, the tangential speed is directly proportional to the distance from the centre: so the point on the rim, having a larger r than the point halway between the rim and the axis, will have a larger tangential speed, and therefore will travel a greater distance in a given time.