ANOTHER RUNNING DOG
Explanation:
In the given question it is to find a suitable reference point to describe the motion of dog. Here I could suggest that it is better to compare the dog with another running dog to create the relative speed difference to get a reliable motion variation.
Because the motion of dog is in the linear with respect to the another dog and to the acceleration produced by the dog in the required interval is easy to calculate with respect to another dog which is already in motion.
Hence, I suggest that Motion of dog can be analysed better by analyse the motion variation of dog with another dog running.
(A) P(v) = 0.135v
(B) P(h) = 0.234v
<u>Explanation:</u>
Given-
Mass of the ball, m = 0.27kg
Force, F = 125N
angle of projection, θ = 30°
Let v be the velocity of the ball.
A) vertical component of the momentum of the volleyball
We know,
P(vertical) = mvsinθ
P(V) = 0.27 X v X sin 30°
P(V) = 0.27 X v X 0.5
P(V) = 0.135v
B) horizontal component of the momentum of the volleyball
We know,
P(Horizontal) = mvcosθ
P(h) = 0.27 X v X cos 30°
P(h) = 0.27 X v X 0.866
P(h) = 0.234v
Explanation:
If the center of the load is directly above the vertebrae, there is no torque in the system. This is a good thing so that the vertebrae are not put out of alignment over time. (Of course, this still doesn't prevent compression of the vertebrae over time, which is a possibility.)
Force of gravity. Hope this is correct good luck!!
The answer would be “B” because humans would need water, protection from radiation so we don’t melt or burn to death lol, and a gaseous atmosphere because we would need oxygen.