Sonar<span> (originally an acronym for Sound Navigation And Ranging) is a technique that uses sound propagation (usually underwater, as in submarine navigation) to navigate, communicate with or detect objects on or under the surface of the water, such as other vessels.</span>
        
             
        
        
        
Answer:
    μ = 0.37
Explanation:
For this exercise we must use the translational and rotational equilibrium equations.
We set our reference system at the highest point of the ladder where it touches the vertical wall. We assume that counterclockwise rotation is positive
let's write the rotational equilibrium
            W₁  x/2 + W₂ x₂ - fr y = 0
where W₁ is the weight of the mass ladder m₁ = 30kg, W₂ is the weight of the man 700 N, let's use trigonometry to find the distances
              cos 60 = x / L
where L is the length of the ladder
               x = L cos 60
             sin 60 = y / L
            y = L sin60
 the horizontal distance of man is
             cos 60 = x2 / 7.0
             x2 = 7 cos 60
we substitute
          m₁ g L cos 60/2 + W₂ 7 cos 60 - fr L sin60 = 0
          fr = (m1 g L cos 60/2 + W2 7 cos 60) / L sin 60
let's calculate
          fr = (30 9.8 10 cos 60 2 + 700 7 cos 60) / (10 sin 60)
          fr = (735 + 2450) / 8.66
          fr = 367.78 N
the friction force has the expression
          fr = μ N
write the translational equilibrium equation
          N - W₁ -W₂ = 0
          N = m₁ g + W₂
          N = 30 9.8 + 700
          N = 994 N
we clear the friction force from the eucacion
         μ = fr / N
         μ = 367.78 / 994
         μ = 0.37
 
        
             
        
        
        
Answer:
The acceleration of the car, a = -3.75 m/s²
Explanation:
Given data,  
The initial velocity of the airplane, u = 75 m/s
The final velocity of the plane, v = 0 m/s
The time period of motion, t = 20 s
Using the I equations of motion
                     v = u + at
                      a = (v - u) / t
                         = (0 - 75) / 20
                         = -3.75 m/s²
The negative sign indicates that the plane is decelerating
Hence, the acceleration of the car, a = -3.75 m/s²