Multiply the masses by the respective distances:
(12 kg) (2 m) = 24 J
(25 kg) (1 m) = 25 J
so the heavier bag takes more work to lift, and (b) is the answer.
(d) is technically correct if the sacks are carrying different contents whose masses are not equal, but since we don't know what's inside each sack, assume 12 kg and 25 kg are the masses of each sack *and* their contents.
The Formula Bar is where data or formulas you enter into a worksheet appear for the active cell. The Formula Bar can also be used to edit data or formula in the active cell. The active cell displays the results of its formula while we see the formula itself in the Formula Bar.
mark me brainliestt :))
Answer:
Since the distance between the pivot and its weight is zero, the moment of its weight about the pivot (= weight × 0) is zero. Hence, the weight of the ruler can be ignored.
Hope this helps:)
Moment of inertia of single particle rotating in circle is I1 = 1/2 (m*r^2)
The value of the moment of inertia when the person is on the edge of the merry-go-round is I2=1/3 (m*L^2)
Moment of Inertia refers to:
- the quantity expressed by the body resisting angular acceleration.
- It the sum of the product of the mass of every particle with its square of a distance from the axis of rotation.
The moment of inertia of single particle rotating in a circle I1 = 1/2 (m*r^2)
here We note that the,
In the formula, r being the distance from the point particle to the axis of rotation and m being the mass of disk.
The value of the moment of inertia when the person is on the edge of the merry-go-round is determined with parallel-axis theorem:
I(edge) = I (center of mass) + md^2
d be the distance from an axis through the object’s center of mass to a new axis.
I2(edge) = 1/3 (m*L^2)
learn more about moment of Inertia here:
<u>brainly.com/question/14226368</u>
#SPJ4
Acceleration = velocity / time.