1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pachacha [2.7K]
3 years ago
12

4) A satellite, mass m, is in circular orbit (radius r) around the earth, which has mass ME and radius Re. The value of r is lar

ge enough that you cannot assume the force of gravity is the same as it is at the surface of the earth. (a) What is the kinetic energy of the satellite? Your answer should be in terms of G, ME, m, and r only. (15) (b) In terms of given quantities, calculate the period of the orbit. How does it depend on m? (10) (c) Show that gravity does zero work on the satellite while it is in circular orbit. (d) What is the total mechanical energy, E, of the satellite, and why is the answer negative? Your answer should be in terms of G, ME, m, and r only. (5)
Physics
1 answer:
defon3 years ago
3 0
<h2>Answers:</h2>

(a) The kinetic energy of a body is that energy it possesses due to its movement and is defined as:

K=\frac{1}{2}m{V}{2}     (1)

Where m is the mass of the body and V its velocity.

In this specific case of the satellite, its kinetic energy K_m taking into account its mass m is:

K_{m}=\frac{1}{2}m{V}^{2}     (2)

On the other hand, the velocity of a satellite describing a circular orbit is constant and defined by the following expression:

V=\sqrt{G\frac{ME}{r}}     (3)

Where G is the gravity constant, ME the mass of the Earth and r the radius of the orbit <u>(measured from the center of the Earth to the satellite). </u>

Now, if we substitute the value of V from equation (3) on equation (2), we will have the final expression of the kinetic energy of this satellite:

K_{m}=\frac{1}{2}m{\sqrt{G\frac{ME}{r}}}^{2}     (4)

Finally:

K_{m}=\frac{1}{2}Gm\frac{ME}{r}     (5)  >>>>This is the kinetic energy of the satellite

(b) According to Kepler’s 2nd Law applied in the case of a circular orbit, its Period T is defined as:

T=2\pi\sqrt{\frac{r^{3}}{\mu}}     (6)

Where \mu is a constant and is equal to GME. So, this equation in these terms is written as:

T=2\pi\sqrt{\frac{r^{3}}{GME}}     (7)

As we can see, <u>the Period of the orbit does not depend on the mass of the satellite </u>m, it depends on the mass of the greater body (the Earth in this case) ME, the radius of the orbit and the gravity constant.

(c) The gravitational force described by the law of gravity is a central force and therefore is <u>a conservative force</u>. This means:

1. The work performed by a gravitational force to move a body from a position A to a position B <u>only depends on these positions and not on the path followed to get from A to B. </u>

2. When the path that the body follows between A and B is a c<u>losed path or cycle</u> (as this case with a <u>circular orbit</u>), <u>the gravitational work is null or zero</u>.

<h2>This is because the gravity force that maintains an object in circular motion is a centripetal force, that is, <u>it always acts perpendicular to the movement</u>. </h2>

Then, in the case of the satellite orbiting the Earth in a circular orbit, its movement will always be perpendicular to the gravity force that attracts it to the planet, at each point of its path.

(d)  The total Mechanical Energy E of a body is the sum of its Kinetic Energy K and its Potential Energy P:

E=K+P     (8)

But in this specific case of the circular orbit, its kinetic energy will be expresses as calculated in the first answer (equation 5):

K_{m}=\frac{1}{2}Gm\frac{ME}{r}     (5)

And its potential energy due to the Earth gravitational field as:

P_{m}=-G\frac{mME}{r}     (9)

This energy is negative by definition.

So, the total mechanical energy of the orbit, also called the Orbital Energy is:

E=\frac{1}{2}Gm\frac{ME}{r}+(- G\frac{mME}{r})      (10)

Solving equation (10) we finally have the Orbital Energy:

E=-\frac{1}{2}mME\frac{G}{r}     (11)

At this point, it is necessary to clarify that a satellite (or any other celestial body) orbiting another massive body, can describe one of these types of orbits depending on its Orbital Total Mechanical Energy E:

-When E=0:

We are talking about an <u>open orbit</u> in which the satellite escapes from the attraction of the planet's gravitational field. The shape of its trajectory is a parabola, fulfilling the following condition:

K_{m}=-P_{m}

Such is the case of some comets in the solar system.

-When E>0:

We are also talking about <u>open orbits</u>, which are hyperbolic, being K_{m}>P_{m}

<h2>-When E: >>>><u>This case</u></h2>

We are talking about <u>closed orbits</u>, that is, the satellite will always be "linked" to the gravitational field of the planet and will describe an orbit that periodically repeats with a shape determined by the relationship between its kinetic and potential energy, as follows:

-Elliptical orbit: Although E is constant, K_m and P_m are changing along the trajectory .

-Circular orbit: When at all times both the kinetic energy K_m and the potential P_m remain constant, resulting in a total mechanical energy E as the one obtained in this exercise. This means that the speed is constant too and <u>is the explanation of why this Energy has a negative sign. </u>

You might be interested in
The orbital radius of an electron in a hydrogen atom is 0.846 nm. What is its de Broglie wavelength?
kotykmax [81]

Answer:

The  value  is  \lambda   = 1.329 *10^{-9} \  m

Explanation:

From the question we are told that

  The  orbital radius is  r =  0.846nm =  0.846 *10^{-9} \ m

Generally the de Broglie wavelength is mathematically represented as

      \lambda  =  \frac{2 *  \pi  r}{4}

substituting values

     \lambda  =  \frac{ 2 * 3.142  *  0.846 *10^{-9}}{4}

    \lambda   = 1.329 *10^{-9} \  m

6 0
3 years ago
Which statement correctly compares ultraviolet light to visible light? Ultraviolet light has both a lower frequency and longer w
Effectus [21]

The correct statement is

Ultraviolet light has both a higher frequency and a higher radiant energy than visible light.

because ultraviolet light has wavelength smaller than the visible light hence has a greater frequency as compared to visible light. (frequency is inversely related to wavelength. hence smaller the wavelength , greater will be the frequency)

we also know that the radiant energy is directly proportional to the frequency. hence greater the frequency , greater will be the radiant energy.

Since the frequency is greater for ultraviolet light , it radiant energy is also greater


7 0
3 years ago
Read 2 more answers
A student has a displacement of 739 m north in 162 s. What was the student’s average velocity?A. 0.22 m/sB. 119,718 m/sC. 162 m/
user100 [1]

Answer:

answer below

Explanation:

Displacement of the student is 739 m due North and it takes 162 s.

We need to find the student's average velocity. Using formula of velocity.

Velocity = displacement/time

v= 739/162

v= 4.56

4 0
3 years ago
Which vector shows the direction of the centripetal acceleration at this point
Mademuasel [1]

Answer:

It's B

Explanation:

6 0
3 years ago
When an unbalanced force acts on an object,
Gwar [14]
When balanced forces follow up on an object, the object won't move. If you push against a wall, the wall pushes back with an equal but opposite force. Neither you nor the wall will move. Forces that cause a change in the motion of an object are unbalanced forces.
6 0
3 years ago
Read 2 more answers
Other questions:
  • Explain why the atomic mass of an element is a weighted-average mass
    6·1 answer
  • Calculate the amount of energy produced in joules by 100- watt light bulb lit for 2.5 hours.
    9·1 answer
  • A transformer's secondary coil has twice as many turns as its primary. If the primary is connected to 6 V of DC, how many volts
    15·1 answer
  • What type of power plant burns material to make electricity?
    6·2 answers
  • is it possible for the thermal energy in a bowl of cold water equal to the thermal energy in a bowl of hot water
    6·1 answer
  • What does the word self discipline mean to you
    12·2 answers
  • Compared to a human, what is similar about how blue whales organism gets molecules from food and air?
    10·2 answers
  • You throw a baseball a distance of 20 meters. Is it work or not work?
    6·1 answer
  • The thermal energy of what system does change
    9·1 answer
  • Which states of a hydrogen atom can be excited by a collision with an electron with kinetic energy k = 12. 5 ev?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!