Manganese has 25 electrons and is a transition element
Throughout the metallic structure allowing the atoms to slide past each other. This sliding is why metals are ductile and malleable. Ioniccompound must break bonds to slide past one another, which causes the ionic material to split and crack.
Answer:
1. pH = 1.23.
2. 
Explanation:
Hello!
1. In this case, for the ionization of H2C2O4, we can write:

It means, that if it is forming a buffer solution with its conjugate base in the form of KHC2O4, we can compute the pH based on the Henderson-Hasselbach equation:
![pH=pKa+log(\frac{[base]}{[acid]} )](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29)
Whereas the pKa is:

The concentration of the base is 0.347 M and the concentration of the acid is 0.347 M as well, as seen on the statement; thus, the pH is:

2. Now, since the addition of KOH directly consumes 0.070 moles of acid, we can compute the remaining moles as follows:

It means that the acid remains in excess yet more base is yielded due to the effect of the OH ions provided by the KOH; therefore, the undergone chemical reaction is:

Which is also shown in net ionic notation.
Best regards!
Answer:
b) 2H+(aq) + 2C1-(aq) + Zn(s) → H2(g) + Zn2+(aq) + 2Cl-(aq)
Explanation:
The equation is given as;
2HCl(aq) + Zn(s) + H2(g) + ZnCl2(aq)
In writing an ionic equation, only the aqueous compounds dissociates into ions. This means HCl and ZnCl2 would dissociate to form ions.
This is given as;
2H+ + 2Cl- + Zn(s) --> H2(g) + Zn2+ + 2Cl-
The correct option is;
b) 2H+(aq) + 2C1-(aq) + Zn(s) → H2(g) + Zn2+(aq) + 2Cl-(aq)
Here, as they both are physical things without any magnetic property & density difference, screening would be best.
In short, Your Answer would be Option C
Hope this helps!