Answer:
64J of energy must have been released.
Explanation:
Step 1: Data given
One reactant contains 346 J of chemical energy, the other reactant contains 153 J of chemical energy.
The product contains 435 J of chemical energy.
Step 2:
Since the energy is conserved
Sum of energy of Reactants = Energy of Products
Sum of energy of Reactants = 346 J + 153 J = 499 J
The energy of the product = 435 J
435 < 499
This means energy must have been lost as heat.
Step 3: Calculate heat released
499 J - 435 J = 64 J
64J of energy must have been released.
I think this the the list of choices relating to the above question.
reaction rate
<span>activation energy </span>
<span>collision theory </span>
<span>spontaneous reaction
</span>
The term that best relate to ben's observation is REACTION RATE.
Reaction rate is defined as the speed at which the chemical reaction proceeds. It either is the amount of concentration of a product in a given unit of time or the concentration of the reactant that is being consumed in a unit of time.
Answer:
B. It represents the change in enthalpy for the reaction.
Explanation:
The potential energy diagram for a chemical reaction shows its potential energy plotted against the reaction progress coordinate. The potential energy diagram shows how the potential energy of reactants and products vary as reactants are converted into products.
The potential energy of the system refers to energy stored in the chemical bonds of reactants and products. The difference between the potential energy of reactants and products is known as the enthalpy of reaction. This difference in potential energy may be positive or negative. A positive difference in potential energy implies an endothermic reaction while a negative difference in potential energy implies an exothermic reaction.
Answer:
Intake, compression, power, and exhaust
Explanation:
A four-stroke cycle engine is an internal combustion engine that utilizes four distinct piston strokes (intake, compression, power, and exhaust) to complete one operating cycle. The piston make two complete passes in the cylinder to complete one operating cycle.