Answer : The ratio of the protonated to the deprotonated form of the acid is, 100
Explanation : Given,

pH = 6.0
To calculate the ratio of the protonated to the deprotonated form of the acid we are using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
![pH=pK_a+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
Now put all the given values in this expression, we get:
![6.0=8.0+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=6.0%3D8.0%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
As per question, the ratio of the protonated to the deprotonated form of the acid will be:
Therefore, the ratio of the protonated to the deprotonated form of the acid is, 100
Conduction tranfer with the touche
Radiation transfer in distance
And convection moves as a current
Osmium atomic number is 76
mol of Na2CO3 = 2.36 x 10⁻⁴
<h3>Further explanation</h3>
Given
Mass : 0.025 g of Na2CO3
Required
moles
Solution
The mole is the number of particles contained in a substance
1 mol = 6.02.10²³
Moles can also be determined from the amount of substance mass and its molar mass :
mol = mass : molar mass
mass = mol x molar mass
Input the value :
mol = mass : MW Na2CO3
mol = 0.025 g : 106 g/mol
mol = 2.36 x 10⁻⁴
Answer:
Chemical bond can be define as a force holding atoms firmly together to a form molecules.
Explanation:
Chemical bond is a strong attraction between atoms, molecules or ions that enhance the formation of chemical compounds. The bonds may be due from the electrostatic force of attraction between opposite charged ions or through the sharing of electrons.
Types of chemical bond
There are four types of chemical bonds
- covalent bond
- polar bond
- ionic bond
- hydrogen bond
Ionic bond involves the transfer of an electron which involves one atom receiving and the other giving out
Covalent bond involves the sharing of electrons between two atoms
Polar bonds involves two atoms connected by covalent bonds which may exert different attractions for the electrons in the bond resulting into unevenly charges distribution
Hydrogen bond: this is found mostly in water H2O. They are polarized