Answer:
1.23 j/g. °C
Explanation:
Given data:
Mass of metal = 35.0 g
Initial temperature = 21 °C
Final temperature = 52°C
Amount of heat absorbed = 320 cal (320 ×4.184 = 1338.88 j)
Specific heat capacity of metal = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 52°C - 21 °C
ΔT = 31°C
1338.88 j= 35 g ×c× 31°C
1338.88 j= 1085 g.°C ×c
1338.88 j/1085 g.°C = c
1.23 j/g. °C = c
One benefit of using ph instead of molar concentrations is that since molarity is a rate of “ moles per liter" , Molarity (M) is used to measure the concentration of hydrogen ions in a solution, which is used with pH applications. ... The H+ is the molarity number, which shows the concentration of hydrogen ions in the solution.
Answer: The rate increases 3 times on raising the temperature from 20degree to 30 degree
Explanation:
According to Arrhenius equation with change in temperature, the formula is as follows.
![ln \frac{k_{2}}{k_{1}} = \frac{-E_{a}}{R}[\frac{1}{T_{2}} - \frac{1}{T_{1}}]](https://tex.z-dn.net/?f=ln%20%5Cfrac%7Bk_%7B2%7D%7D%7Bk_%7B1%7D%7D%20%3D%20%5Cfrac%7B-E_%7Ba%7D%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_%7B2%7D%7D%20-%20%5Cfrac%7B1%7D%7BT_%7B1%7D%7D%5D)
where
= rate constant at temp 
= rate constant at temp
= activation energy
R= gas constant
= temperature = 
= temperature = 
![ln \frac{k_{2}}{k_{1}} = \frac{-85\times 1000J/mol}{8.314J/Kmol}[\frac{1}{303} - \frac{1}{293}]](https://tex.z-dn.net/?f=ln%20%5Cfrac%7Bk_%7B2%7D%7D%7Bk_%7B1%7D%7D%20%3D%20%5Cfrac%7B-85%5Ctimes%201000J%2Fmol%7D%7B8.314J%2FKmol%7D%5B%5Cfrac%7B1%7D%7B303%7D%20-%20%5Cfrac%7B1%7D%7B293%7D%5D)


Thus rate increases 3 times on raising the temperature from 20degree to 30 degree
Answer:
Explanation:
combustion reacts with oxygen