Answer:
pHe = 3.2 × 10⁻³ atm
pNe = 2.5 × 10⁻³ atm
P = 5.7 × 10⁻³ atm
Explanation:
Given data
Volume = 1.00 L
Temperature = 25°C + 273 = 298 K
mHe = 0.52 mg = 0.52 × 10⁻³ g
mNe = 2.05 mg = 2.05 × 10⁻³ g
The molar mass of He is 4.00 g/mol. The moles of He are:
0.52 × 10⁻³ g × (1 mol / 4.00 g) = 1.3 × 10⁻⁴ mol
We can find the partial pressure of He using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.3 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 3.2 × 10⁻³ atm
The molar mass of Ne is 20.18 g/mol. The moles of Ne are:
2.05 × 10⁻³ g × (1 mol / 20.18 g) = 1.02 × 10⁻⁴ mol
We can find the partial pressure of Ne using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.02 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 2.5 × 10⁻³ atm
The total pressure is the sum of the partial pressures.
P = 3.2 × 10⁻³ atm + 2.5 × 10⁻³ atm = 5.7 × 10⁻³ atm
Answer:
108.9g of Silver can be produced from 125g of Ag2S
Explanation:
The compound Ag2S shows that two atoms of Silver Ag, combined with an atom of Sulphur S to form Ag2S. We can as well say the combination ration of Silver to Sulphur is 2:1
•Now we need to calculate the molecular weight of this compound by summing up the molar masses of each element in the compound.
•Molar mass of Silver Ag= 107.9g/mol
•Molar mass of Sulphur S= 32g/mol
•Molecular weight of Ag2S= (2×107.9g/mol) + 32g/mol
•Molecular weight of Ag2S= 215.8g/mol + 32g/mol= 247.8g/mol
•From our calculations, we know that 215.8g/mol of Ag is present in 247.8g/mol of Ag2S
If 247.8g Ag2S produced 215.8g Ag
125g Ag2S will produce xg Ag
cross multiplying we have
xg= 215.8g × 125g / 247.8g
xg= 26975g/247.8
xg= 108.85g
Therefore, 108.9g of Silver can be produced from 125g of Ag2S
<u>Answer:</u> The correct answer is Protein B.
<u>Explanation:</u>
Gel-filtration chromatography is a separation technique that is based on the size of the molecules in a compound. It is also known as size-exclusion chromatography in which the eluent (carrier) used is an aqueous solution.
The matrix that is used is a porous material. When the sample is inserted in the column, the smaller particles interact strongly with the matrix than the large ones. Thus, as the eluent is passed through the matrix, larger molecules come out first, and the smallest molecule comes out last.
Given sizes of the proteins:
Protein A: 1200 kDa
Protein B: 2000 kDa
Protein C: 800 kDa
As protein B has the largest size of all the given proteins, it will emerge out first from the column.
Hence, the correct answer is Protein B.
Answer:
Hydrogen and Cobalt
Explanation:
Break up each individual element
- Hope that helps! Please let me know if you need further explanation.