Answer: The value of
is 0.0012 M and
is
.
Explanation:
pH is the negative logarithm of concentration of hydrogen ion.
It is given that pH is 2.89. So, the value of concentration of hydrogen ions is calculated as follows.
![pH = - log [H^{+}]\\2.89 = - log [H^{+}]\\conc. H^{+} = 0.0012 M](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5BH%5E%7B%2B%7D%5D%5C%5C2.89%20%3D%20-%20log%20%5BH%5E%7B%2B%7D%5D%5C%5Cconc.%20H%5E%7B%2B%7D%20%3D%200.0012%20M)
The relation between pH and pOH value is as follows.
pH + pOH = 14
0.0012 + pOH = 14
pOH = 14 - 0.0012 = 13.99
Now, pOH is the negative logarithm of concentration of hydroxide ions.
Hence,
is calculated as follows.
![pOH = - log [OH^{-}]\\13.99 = - log [OH^{-}]\\conc. OH^{-} = 1.02 \times 10^{-14} M](https://tex.z-dn.net/?f=pOH%20%3D%20-%20log%20%5BOH%5E%7B-%7D%5D%5C%5C13.99%20%3D%20-%20log%20%5BOH%5E%7B-%7D%5D%5C%5Cconc.%20OH%5E%7B-%7D%20%3D%201.02%20%5Ctimes%2010%5E%7B-14%7D%20M)
Thus, we can conclude that the value of
is 0.0012 M and
is
.
Answer:
it's a diatomic molecule–which is why it is O₂.
Explanation:
Diatomic molecules are molecules composed of only two atoms, of the same or different chemical elements. Only a handful of elements on the periodic table are diatomic such as nitrogen, hydrogen, fluorine, chlorine, bromine, and iodine.
Reactants are what is changed in the chemical reaction. They go before the arrow when you wrote the equation. Products are what is formed when the chemical reaction occurs. Products always contain the same elements as the reactants, but they might be rearranged because of the reaction. In this picture, you can see that the reactants go before the arrow, and the products go after.
Answer:
they are molecules with normal bonds rather than partial bonds and can occasionally be isolated.
Explanation:
In chemistry, reaction intermediates are species that are formed from reactants and are subsequently being transformed into products as the reaction progresses. In other words, reaction intermediates are species that do not appear in a balanced reaction equation but occur somewhere along the reaction mechanism of a non-elementary reaction. They are usually short lived species that possess a high amount of energy. They may or may not be isolated.
They are often molecular species with normal bonds unlike activated complexes that are sometimes hypervalent species.
Volume of room = 
= 
Now, according to conversion factor, convert 6,400 mg to micrograms
Since, 1 mg is equal to 1000 microgram.
Therefore, 6,400 mg = 
= 6,400,000 micrograms of acetone.
To calculate concentration of acetone, divide volume and evaporated amount of acetone in micrograms.
Thus,
Concentration of acetone = 
= 39296.5910 microgram per cubic meter or 
Hence, concentration of acetone is equal to 