The answer for the following mention bellow.
- <u><em>Therefore the final temperature of the gas is 260 k</em></u>
Explanation:
Given:
Initial pressure (
) = 150.0 kPa
Final pressure (
) = 210.0 kPa
Initial volume (
) = 1.75 L
Final volume (
) = 1.30 L
Initial temperature (
) = -23°C = 250 k
To find:
Final temperature (
)
We know;
According to the ideal gas equation;
P × V = n × R ×T
where;
P represents the pressure of the gas
V represents the volume of the gas
n represents the no of moles of the gas
R represents the universal gas constant
T represents the temperature of the gas
We know;
= constant
×
= 
Where;
(
) represents the initial pressure of the gas
(
) represents the final pressure of the gas
(
) represents the initial volume of the gas
(
) represents the final volume of the gas
(
) represents the initial temperature of the gas
(
) represents the final temperature of the gas
So;
= 
(
) =260 k
<u><em>Therefore the final temperature of the gas is 260 k</em></u>
<u><em></em></u>
Answer:
The answer is
<h2>3.68 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula
<h3>

</h3>
From the question
mass of substance = 12.50 g
volume = 3.4 mL
The density of the substance is

We have the final answer as
<h3>3.68 g/mL</h3>
Hope this helps you
Answer: There are 0.006 moles of acid in the flask.
Explanation:
Given:
= 21.35 mL,
= 0.150 M
= 25.0 mL,
= ?
Formula used to calculate molarity of
is as follows.

Substitute the values into above formula as follows.

As molarity is the number of moles of a substance present in a liter of solution.
Total volume of solution = 
= 21.35 mL + 25.0 mL
= 46.36 mL (1 mL = 0.001 L)
= 0.04636 L
Therefore, moles of acid required are calculated as follows.

Thus, we can conclude that there are 0.006 moles of acid in the flask.
N2<span> + 3H</span>2<span> = 2NH</span><span>3
so, NH3 = (N2 + 3H2)/ 2
= (28g + 3*25g)/2
= 51.5g</span>
Answer:
Iron's atomic number is 26
Explanation: