The internal energy of the gas is 49,200 J
Explanation:
The internal energy of a diatomic gas, such as , is given by
where
n is the number of moles
R is the gas constant
T is the absolute temperature of the gas
For the gas in this problem, we have:
n = 4.50 (number of moles)
R = 8.31 J/(mol·K) (gas constant)
(absolute temperature)
Substituting, we find:
Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
Answer:
Explanation:
Let the magnitude of magnetic field be B .
flux passing through the coil's = area of coil x field x no of turns
Φ = 3.13 x 10⁻⁴ x B x 135 = 422.55 x 10⁻⁴ B .
emf induced = dΦ / dt , Φ is magnetic flux.
current i = dΦ /dt x 1/R
charge through the coil = ∫ i dt
= ∫ dΦ /dt x 1/R dt
= 1 / R ∫ dΦ
= Φ / R
Total resistance R = 61.1 + 44.4 = 105.5 ohm .
3.44 x 10⁻⁵ = 422.55 x 10⁻⁴ B / 105.5
B = 3.44 x 10⁻⁵ x 105.5 / 422.55 x 10⁻⁴
= .86 x 10⁻¹
= .086 T .
Neutrons and protons cannot be removed from nucleus from chemical reactions because they are strongly held together but nuclear reactions are strong enough to separate them. Hence option A is correct.
The wavelength of the infrared radiation is λ = ×m.
<h3>What is infrared radiation?</h3>
An infrared telescope is tuned to detect infrared radiation with a frequency of 9.45 THz.
We know that,
1 THz = 10¹² Hz
So,
f = 9.45 × 10¹² Hz
We need to find the wavelength of the infrared radiation.
λ=c/f
λ = 3×/9.45×
λ = 3.174 × m
The term "infrared radiation" (IR) refers to a part of the electromagnetic radiation spectrum with wavelengths between about 700 nanometers (nm) and one millimeter (mm). Longer than visible light waves but shorter than radio waves are infrared waves.
Electromagnetic radiation with wavelengths longer than those of visible light is known as infrared, also known as infrared light. Since it is undetectable to the human eye, The typical range of wavelengths considered to be infrared (IR) is from about 1 millimeter to the nominal red edge of the visible spectrum, or about 700 nanometers.
To learn more about infrared radiation from the given link:
brainly.com/question/13163856
#SPJ4