Answer:
I'm not sure but I think it's organic
Answer: -2.373 x 10^-24J/K(particles
Explanation: Entropy is defined as the degree of randomness of a system which is a function of the state of a system and depends on the number of the random microstates present.
The entropy change for a particle in a system depends on the initial and final states of a system and is given by Boltzmann equation as
S = k ln(W) .
where S =Entropy
K IS Boltzmann constant ==1.38 x 10 ^-23J/K
W is the number of microstates available to the system.
The change in entropy is given as
S2 -S1 = kln W2 - klnW1
dS = k ln (W2/W1)
where w1 and w2 are initial and final microstates
from the question, W2(final) = 0.842 x W1(initial), so:
= 1.38*10-23 ln (0.842)
=1.38*10-23 x -0.1719
= -2.373 x 10^-24J/K(particles)
The mixture contains:
CaCO3 + (NH4)2CO3 in which the amount of carbonate CO3 = 60.7% by mass
Let, the total mass = 100 grams
Mass of CaCO3 = x grams
Mass of (NH4)2CO3 = y grams
Thus, x + y = 100 ------------(1)
Mass of CO3 = 60.7% = 60.7 g
Molar mass of CO3 = 60 g/mol
Total # moles of CO3 = 60.7 g/60 g.mol-1 = 1.012 moles
The total moles of CO3 comes from CaCO3 and (NH4)2CO3. Therefore,
moles CaCO3 + moles (NH4)2CO3 = 1.012
mass CaCO3/molar mass CaCO3 + mass (NH4)2 CO3/molar mass = 1.012
x/100 + y/96 = 1.012---------(2)
based on equation 1 we can write: y = 100-x
x/100 + (100-x)/96 = 1.012
x = 71.2 g
Mass of CaCO3 = 71.2 g