a) NH₃ molecules have stronger intermolecular attractions than CH₄ molecules.
Explanation:
Ammonia molecules have stronger intermolecular attractions compared to methane.
Ammonia molecules have london dispersion forces and hydrogen bonds between their molecules.
Methane molecules have only london dispersion forces in their structure.
- hydrogen bonds are very strong attractive forces between molecules in which the hydrogen of a molecule is attracted by a more electronegative atom of another usually oxygen, nitrogen and fluorine.
- London dispersion forces are weak forces of attraction between heteronuclear atoms.
Learn more:
Hydrogen bonds brainly.com/question/10602513
#learnwithBrainly
The answer is 34.1 mL.
Solution:
Assuming ideal behavior of gases, we can use the universal gas law equation
P1V1/T1 = P2V2/T2
The terms with subscripts of one represent the given initial values while for terms with subscripts of two represent the standard states which is the final condition.
At STP, P2 is 760.0torr and T2 is 0°C or 273.15K. Substituting the values to the ideal gas expression, we can now calculate for the volume V2 of the gas at STP:
(800.0torr * 34.2mL) / 288.15K = (760.0torr * V2) / 273.15K
V2 = (800.0torr * 34.2mL * 273.15K) / (288.15K * 760.0torr)
V2 = 34.1 mL
Cardenolides, with the chemical formula CH₁₈C₂₀H₁₅CHCO₂ have (D) 23 carbon atoms, 34 hydrogen atoms, and 2 oxygen atoms.
Milkweed contains a poison known as cardenolides. The chemical formula for cardenolides CH₁₈C₂₀H₁₅CHCO₂.
The subscripts in the formula represent the atomicities, that is the number of atoms of each element in each part of the formula.
We can calculate the total number of atoms of each element by adding its atomicities.
<h3>Carbon atoms</h3>

<h3>Hydrogen atoms</h3>

<h3>Oxygen atoms</h3>

Cardenolides, with the chemical formula CH₁₈C₂₀H₁₅CHCO₂ have (D) 23 carbon atoms, 34 hydrogen atoms, and 2 oxygen atoms
Learn more: brainly.com/question/13348838
Answer:
The volume would be 44.8 L
Explanation:
Message me for extra information
parkguy786 snap
Answer:
Elements that are in the same period have chemical properties that are not all that similar. Consider the first two members of period 3: sodium (Na) and magnesium (Mg). In reactions, they both tend to lose electrons (after all, they are metals), but sodium loses one electron, while magnesium loses two.
Explanation:
(Hoped this helped! :D)