1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lyudmila [28]
3 years ago
13

What does a cell division allow all multicellular organisms to do

Physics
1 answer:
Levart [38]3 years ago
4 0
I believe that the answer should be B. It makes the most sense to me.
You might be interested in
A ball of plasticine is released from rest at height of 2.2 m above the ground. After touching the ground, the plasticine ball c
Anna35 [415]

The magnitude of the acceleration of the ball while coming to rest is 477.43 m/s²

The direction of the acceleration of the ball is downwards

The given parameters

initial velocity of the ball, u = 0

height above the ground, h = 2.2 m

time of motion of the ball, t = 96 ms = 0.096 s

The magnitude of the acceleration of the ball while coming to rest is calculated as;

let the downwards direction of the acceleration be positive

h = ut + 0.5 at^2\\\\h = 0 + 0.5at^2\\\\h = 0.5 at^2\\\\a = \frac{h}{0.5t^2} \\\\a = \frac{2.2}{0.5 \times 0.096^2} \\\\a = 477.43 \ m/s^2

The direction of the acceleration of the ball is downwards

Learn more here: brainly.com/question/15407740

4 0
2 years ago
Two obiect accumulated a charge of
tamaranim1 [39]

Answer:

A. 181.24 N

Explanation:

The magnitude of hte electrostatic force between two charged objects is given by the equation

F=k\frac{q_1 q_2}{r^2}

where

k is the Coulomb's constant

q1, q2 are the magnitudes of the two charges

r is the separation between the charges

In this problem, we have:

q_1=4.5\mu C=4.5\cdot 10^{-6}C is the magnitude of the 1st charge

q_2=2.8\mu C=2.8\cdot 10^{-6}C is the magnitude of the 2nd charge

r = 2.5 cm = 0.025 m is the separation between the charges

Therefore, the magnitude of the electric force is:

F=\frac{(9\cdot 10^9)(4.5\cdot 10^{-6})(2.8\cdot 10^{-6})}{(0.025)^2}=181.44 N

So, the closest answer is

A) 181.24 N

3 0
3 years ago
A photon detector captures a photon with an energy of 4.29 ✕ 10−19 J. What is the wavelength, in nanometers, of the photon?
serious [3.7K]

Answer :  The wavelength of photon is, 4.63\times 10^{2}nm

Explanation : Given,

Energy of photon = 4.29\times 10^{-19}J

Formula used :

E=h\times \nu

As, \nu=\frac{c}{\lambda}

So, E=h\times \frac{c}{\lambda}

where,

\nu = frequency of photon

h = Planck's constant = 6.626\times 10^{-34}Js

\lambda = wavelength of photon  = ?

c = speed of light = 3\times 10^8m/s

Now put all the given values in the above formula, we get:

4.29\times 10^{-19}J=(6.626\times 10^{-34}Js)\times \frac{(3\times 10^{8}m/s)}{\lambda}

\lambda=4.63\times 10^{-7}m=4.63\times 10^{-7}\times 10^9nm=4.63\times 10^{2}nm

Conversion used : 1nm=10^{-9}m

Therefore, the wavelength of photon is, 4.63\times 10^{2}nm

6 0
3 years ago
What must happen to the temperature of a material for thermal expansion to occur.
Aloiza [94]
In most cases the temperature must increase for thermal expansion to occur. Most substances expand as temperature increases because the atoms or molecules vibrate faster as temperature increases and experience greater separation.
8 0
3 years ago
The earth's radius is 6.37×106m; it rotates once every 24 hours.What is the speed of a point on the earth's surface located at 3
bagirrra123 [75]

Answer:

v = 120 m/s

Explanation:

We are given;

earth's radius; r = 6.37 × 10^(6) m

Angular speed; ω = 2π/(24 × 3600) = 7.27 × 10^(-5) rad/s

Now, we want to find the speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator.

The angle will be;

θ = ¾ × 90

θ = 67.5

¾ is multiplied by 90° because the angular distance from the pole is 90 degrees.

The speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator will be:

v = r(cos θ) × ω

v = 6.37 × 10^(6) × cos 67.5 × 7.27 × 10^(-5)

v = 117.22 m/s

Approximation to 2 sig. figures gives;

v = 120 m/s

8 0
3 years ago
Other questions:
  • NEED HELP ASAP Carlos is analyzing the results of a recent scientific study about gravity. Scientists recorded that the experime
    13·1 answer
  • Charging a balloon by rubbing it on wool is an example of
    11·2 answers
  • A diverging lens with a focal length of 14 cm is placed 12 cm to the right of a converging lens with a focal length of 21 cm. An
    13·1 answer
  • Monitoring your grades will help you pinpoint your academic weaknesses. true or false.
    6·2 answers
  • Find the speed of a rock which is thrown off the top of a 20 m tall building at 15 m/s when it makes contact with a bird which i
    15·2 answers
  • If you know the answer please answer the following question down in the picture below.
    9·1 answer
  • An object is moving east, and its velocity changes from 65 m/s to 25 m/s in 10 seconds Which describes the acceleration?
    12·1 answer
  • The different between capactance wnd capacitor
    6·2 answers
  • Please help me solve this! :)
    10·1 answer
  • 9) 25cm³ of a liquid x of density 1.2g/cm³ is mixed with liquid of volume 30 cm³ and 0.9g/cm³ without change in volume. Calculat
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!