Answer:
449.38 J
Explanation:
ΔS = ΔQ/T
Where ΔS = entropy change
Q = quantity of heat
T = temperature
First reservoir :
T = –30°C = - 30 + 273 = 243K
Q = 400 J
Second reservoir :
T = 0°C = 273K
Q =?
To have same increase in entropy for both reservoirs :
Q/T of first reservoir = Q/T of second reservoir
400/243 = Q/273
243 * Q = 400 * 273
Q = (400 * 273) / 243
Q = 109,200 / 243
Q = 449.38271
Q = 449.38 J
The spring balance provides a mass measurement
The molecules of the perfume diffuse through the room at a certain critical concentration and later are detected by our noses.
Answer:
mv=11700
m=900
v=11700/900=13m/s in west
The dimension of K is M/ T^2
according to the question T=2π square root ofm/k here 2 pi is constant so
T= root of m /k and root of k = root of m/ T now by squaring on both the sides we get the answer k= M/ T^2
complete question :
A spring is hanging down from the ceiling, and an object of mass m is attached to the free end. The object is pulled down, thereby stretching the spring, and then released. The object oscillates up and down, and the time T required for one complete up-and-down oscillation is given by the equation T=√2πm/k, where k is known as the spring constant. What must be the dimension of k for this equation to be dimensionally correct?
To learn more about dimension:
brainly.com/question/13314350
#SPJ4