Answer:
v = -v₀ / 2
Explanation:
For this exercise let's use kinematics relations.
Let's use the initial conditions to find the acceleration of the electron
v² = v₀² - 2a y
when the initial velocity is vo it reaches just the negative plate so v = 0
a = v₀² / 2y
now they tell us that the initial velocity is half
v’² = v₀’² - 2 a y’
v₀ ’= v₀ / 2
at the point where turn v = 0
0 = v₀² /4 - 2 a y '
v₀² /4 = 2 (v₀² / 2y) y’
y = 4 y'
y ’= y / 4
We can see that when the velocity is half, advance only ¼ of the distance between the plates, now let's calculate the velocity if it leaves this position with zero velocity.
v² = v₀² -2a y’
v² = 0 - 2 (v₀² / 2y) y / 4
v² = -v₀² / 4
v = -v₀ / 2
We can see that as the system has no friction, the arrival speed is the same as the exit speed, but with the opposite direction.
Start a bedtime routine.
Sorry if this is not the answer your looking for
kinetic energy or potential energy
sorry idek i learned this like 2 years ago
The mass of lead required to make a 1.00 cm3 fishing sinker is 11.3g.
What is mass?
Mass is a metric used in physics to express inertia, a fundamental characteristic of all matter. A mass of matter's resistance to altering its direction or speed in response to the application of a force is what it essentially is. The change that an applied force produces is smaller the more mass a body has.
Given :
Density of lead = 11.3 g/cm3
Volume of sinker = 1.00 cm3
One of a substance's attributes is density, which is calculated by dividing the mass by the volume. Mathematically:
Density : Mass / volume
therefore after putting the values,
mass= 11.3g
To learn more about density click on the link below:
brainly.com/question/18939565
#SPJ4
Answer:
(a) 0.063 m/s
(b) 1.01 m/s
Explanation:
rate of volume flow, V = 4 x 10^-6 m^3/s
(a) radius, r = 4.5 x 10^-3 m
Let the speed of blood is v.
So, V = A x v
where A be the area of crossection of artery
4 x 10^-6 = 3.14 x 4.5 x 10^-3 x 4.5 x 10^-3 x v
v = 0.063 m/s
Thus, the speed of flow of blood is 0.063 m/s .
(b) Now r' = r / 4 = 4.5 /4 x 10^-3 m = 1.125 x 10^-3 m
Let the speed is v'.
So, V = A' x v'
4 x 10^-6 = 3.14 x 1.125 x 10^-3 x 1.125 x 10^-3 x v'
v' = 1.01 m/s
Thus, the speed of flow of blood is 1.01 m/s .