Kinetic energy of the ball is (mv²) / 2, where m is the mass and v is the velocity
So plugging in the mass and the velocity into the kinetic energy expression, you get:
Kinetic energy of the ball = (mv²) / 2
(0.3125/32) times (132)² divided by 2 = 85 ft-lbs
Kinetic energy of the ball = 85 ft-lbs
Newton's third law is: For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. The size of the forces on the first object equals the size of the force on the second object.
The answer to this question is false.
In stars more massive than the sun, the core temperature is hotter, which allows for fusion of more complex elements.
Most of the fusion occurs in the core.
In stars more massive than the sun, fusion continues through Deuterium, Carbon, and finally reaching iron/nickel.
Up to this point, the fusion reaction was endothermic, which means that the energy expended to produce the fusion reaction was exceeded by the energy produced in the reaction.
Fusion past iron is exothermic, and therefore the star will be able to survive by fusing elements heavier than iron.
After the core is almost entirely iron, the star is no longer in the Main Sequence.
So, fusion in stars more massive than the sun continue fusing until the core is almost entirely <em>iron</em>.