In the single-slit experiment, the displacement of the minima of the diffraction pattern on the screen is given by
![y_n= \frac{n \lambda D}{a}](https://tex.z-dn.net/?f=y_n%3D%20%5Cfrac%7Bn%20%5Clambda%20D%7D%7Ba%7D)
(1)
where
n is the order of the minimum
y is the displacement of the nth-minimum from the center of the diffraction pattern
![\lambda](https://tex.z-dn.net/?f=%5Clambda)
is the light's wavelength
D is the distance of the screen from the slit
a is the width of the slit
In our problem,
![D=37.0 cm=0.37 m](https://tex.z-dn.net/?f=D%3D37.0%20cm%3D0.37%20m)
![\lambda=530 nm=5.3 \cdot 10^{-7} m](https://tex.z-dn.net/?f=%5Clambda%3D530%20nm%3D5.3%20%5Ccdot%2010%5E%7B-7%7D%20m)
while the distance between the first and the fifth minima is
![y_5-y_1 = 0.500 mm=0.5 \cdot 10^{-3} m](https://tex.z-dn.net/?f=y_5-y_1%20%3D%200.500%20mm%3D0.5%20%5Ccdot%2010%5E%7B-3%7D%20m)
(2)
If we use the formula to rewrite
![y_5, y_1](https://tex.z-dn.net/?f=y_5%2C%20y_1)
, eq.(2) becomes
![\frac{5 \lambda D}{a} - \frac{1 \lambda D}{a} =\frac{4 \lambda D}{a}= 0.5 \cdot 10^{-3} m](https://tex.z-dn.net/?f=%20%5Cfrac%7B5%20%5Clambda%20D%7D%7Ba%7D%20-%20%5Cfrac%7B1%20%5Clambda%20D%7D%7Ba%7D%20%3D%5Cfrac%7B4%20%5Clambda%20D%7D%7Ba%7D%3D%200.5%20%5Ccdot%2010%5E%7B-3%7D%20m%20%20)
Which we can solve to find a, the width of the slit:
Answer:
Angle is 55.52°
and Initial Speed is v=26.48 m/s
Explanation:
Given data
![x_{o}=0m\\ y_{o}=1.23m\\a_{oy}=a_{1y}=g=-9.8m/s^{2} \\x_{1}=67.0m\\y_{1}=0m\\t_{o}=0\\a_{ox}=m/s^{2} \\t_{1}=4.50s](https://tex.z-dn.net/?f=x_%7Bo%7D%3D0m%5C%5C%20y_%7Bo%7D%3D1.23m%5C%5Ca_%7Boy%7D%3Da_%7B1y%7D%3Dg%3D-9.8m%2Fs%5E%7B2%7D%20%5C%5Cx_%7B1%7D%3D67.0m%5C%5Cy_%7B1%7D%3D0m%5C%5Ct_%7Bo%7D%3D0%5C%5Ca_%7Box%7D%3Dm%2Fs%5E%7B2%7D%20%5C%5Ct_%7B1%7D%3D4.50s)
Applying the kinematics equations for motion with uniform acceleration in x and y direction
So
![x_{1}=x_{o}+v_{ox}t_{1}=67.0m\\0+4.50v_{o}Cos\alpha =67.0m\\v_{o}Cos\alpha =14.99\\v_{o}=14.99/Cos\alpha.....(1) \\and\\y_{1}=y_{o}+v_{oy}t_{1}+(1/2)a_{oy}t_{1}^{2} =0m\\ 1+4.50v_{o}Sin\alpha+(-9.8/2)(4.5)^{2}=0\\ v_{o}Sin\alpha=21.828.....(2)](https://tex.z-dn.net/?f=x_%7B1%7D%3Dx_%7Bo%7D%2Bv_%7Box%7Dt_%7B1%7D%3D67.0m%5C%5C0%2B4.50v_%7Bo%7DCos%5Calpha%20%3D67.0m%5C%5Cv_%7Bo%7DCos%5Calpha%20%3D14.99%5C%5Cv_%7Bo%7D%3D14.99%2FCos%5Calpha.....%281%29%20%5C%5Cand%5C%5Cy_%7B1%7D%3Dy_%7Bo%7D%2Bv_%7Boy%7Dt_%7B1%7D%2B%281%2F2%29a_%7Boy%7Dt_%7B1%7D%5E%7B2%7D%20%3D0m%5C%5C%201%2B4.50v_%7Bo%7DSin%5Calpha%2B%28-9.8%2F2%29%284.5%29%5E%7B2%7D%3D0%5C%5C%20%20v_%7Bo%7DSin%5Calpha%3D21.828.....%282%29)
Put the value of v₀ from equation (1) to equation (2)
So
![\frac{14.99}{Cos\alpha }(Sin\alpha ) =21.828\\as\\tan\alpha =Sin\alpha /Cos\alpha \\So\\14.99tan\alpha =21.828\\tan\alpha =21.828/14.99\\\alpha =tan^{-1}(21.828/14.99) \\\alpha =55.52^{o}](https://tex.z-dn.net/?f=%5Cfrac%7B14.99%7D%7BCos%5Calpha%20%7D%28Sin%5Calpha%20%29%20%3D21.828%5C%5Cas%5C%5Ctan%5Calpha%20%3DSin%5Calpha%20%2FCos%5Calpha%20%5C%5CSo%5C%5C14.99tan%5Calpha%20%3D21.828%5C%5Ctan%5Calpha%20%3D21.828%2F14.99%5C%5C%5Calpha%20%3Dtan%5E%7B-1%7D%2821.828%2F14.99%29%20%5C%5C%5Calpha%20%3D55.52%5E%7Bo%7D)
Put that angle in equation (1) or equation (2) to find the initial velocity
So from equation (1)
![v_{o}=(\frac{14.99}{Cos\alpha } ) \\v_{o}=(\frac{14.99}{Cos(55.52) } ) \\v_{o}=26.48m/s](https://tex.z-dn.net/?f=v_%7Bo%7D%3D%28%5Cfrac%7B14.99%7D%7BCos%5Calpha%20%7D%20%29%20%5C%5Cv_%7Bo%7D%3D%28%5Cfrac%7B14.99%7D%7BCos%2855.52%29%20%7D%20%29%20%5C%5Cv_%7Bo%7D%3D26.48m%2Fs)
Density-Dependent:
1<span><span><span><span>. </span>competition.</span><span>
<span>2. </span>overcrowding.</span><span>
3<span>. </span>predators.</span></span><span>
(These are a few from a test I took, hopefully they help you a bit >.<)</span></span>
Answer:
Total mass of combination = 2+3+5 = 10kg.
Acceleration produced = 2m/s^2
hence force =( total mass × acceleration)= (2×10)= 20 N.
Net force on 3kg block = acceleration × mass = (2 × 2 )= 4 N
applied force on 2 kg block = 20N
Force between 2 kg and 3 kg block = (20-4) = 16N. ans
Net force on 3 kg block = 3 × 2 =6N.
Applied force on 3 kg block due to 2 kg block = 16N.
hence, force between 3 kg and 5 kg block = (16-6) = 10N .
answers:-
(a) 20 N
(b) 16N
(c) 10 N
Answer:
What is the centripetal acceleration of the tip of the fan blade?
6.0 m/s2
48 m/s2
53 m/s2
96 m/s2
Answer is 96
Explanation: