Answer:
The velocity of the truck after the collision is 20.93 m/s
Explanation:
It is given that,
Mass of car, m₁ = 1200 kg
Initial velocity of the car, 
Mass of truck, m₂ = 9000 kg
Initial velocity of the truck, 
After the collision, velocity of the car, 
Let
is the velocity of the truck immediately after the collision. The momentum of the system remains conversed.




So, the velocity of the truck after the collision is 20.93 m/s. Hence, this is the required solution.
Internal energy.
Explanation:
In any substance/object, the particles inside it (atoms/molecules) constantly move in random directions and with random speeds (this motion is called Brownian motion). As a result, the particles have some kinetic energy (which is proportional to the temperature of the substance). Moreover, the particles interact with each other due to the presence of electrostatic intermolecular forces, and as a result, the particles also have some potential energy.
The sum of the kinetic energies and potential energies of the particles in a substance is called internal energy.
Answer:
Rice
Explanation:
Bro just dip it in rice thatd the only way to go
Answer:
Explanation:
No, the bungee jumper is not at equilibrium.
This can be explained when we consider a bungee jumper as a mass that is undergoing simple harmonic motion. At extreme points i.e. at the bottom, the velocity of the jumper is zero but not the acceleration because it is acting in the opposite direction that is why the jumper moves upward.
Acid rain fall is making the earth more polluted and is destroying our earths surface