Answer:
True. Diffusion and osmosis are forms of passive transport.
Explanation:
In diffusion, particles move from an area of higher concentration to one of lower concentration until equilibrium is reached.
In osmosis, a semipermeable membrane is present, so only the solvent molecules are free to move to equalize concentration.
Answer:
the heart would fail to efficiently pump oxygenated blood to the body and lungs
Answer:
The behavior of droplets trapped in geometric structures is essential to droplet manipulation applications such as for droplet transport. Here we show that directional droplet movement can be realized by a V-shaped groove with the movement direction controlled by adjusting the surface wettability of the groove inner wall and the cross sectional angle of the groove. Experiments and analyses show that a droplet in a superhydrophobic groove translates from the immersed state to the suspended state as the cross sectional angle of the groove decreases and the suspended droplet departs from the groove bottom as the droplet volume increases. We also demonstrate that this simple grooved structure can be used to separate a water-oil mixture and generate droplets with the desired sizes. The structural effect actuated droplet movements provide a controllable droplet transport method which can be used in a wide range of droplet manipulation applications.
Explanation:
BOOM NOW I WINNNNNNNNNNNn
Coal is burned to get energy. By burning coal, green houses gases like carbon dioxide, nitrogen oxides and suphur oxides are produced.
Rest of the energy sources given in the option are clean energies.
Answer is A.
Text book: We can measure the mass of the text book easily by weighing machine, to measure the volume we need to measure the length, width, and height of the text book by the ruler, by multiplying these dimension we can get the volume of the text book, and by dividing the mass of the book with its volume we can get the density of the book.
Milk Container: We can measure the mass of the milk container easily by weighing machine, now (assuming the milk container is cylindrical in shape) we need to measure its height, and and diameter and by the formula (π*r^2*h) we can measure its volume, and and by dividing the mass with its volume we can get the density of the milk container.
Air filled balloon: we can measure the mass of the air filled balloon by weighing it weight machine, we know that the density of air is 28.97 kg/m^3, by dividing the mass of the balloon with the denisty of air we can get the volume of the balloon.