Answer:
3.4 mT
Explanation:
L = 0.53 m
i = 7.5 A
Theta = 19 degree
F = 4.4 × 10^-3 N
Let B be the strength of magnetic field.
Force on a current carrying conductor placed in a magnetic field.
F = i × L × B × Sin theta
4.4 × 10^-3 = 7.5 × 0.53 × B × Sin 19
B = 3.4 × 10^-3 Tesla
B = 3.4 mT
Can't really plot a graph here for question 1.
2a) The car speeds up from A to B. The car travels at a constant speed from B to C. The car slows down to a stop from C to D.
b) From the graph, at 10 seconds, the car is moving at 20 m/s.
Answer:
422.36 N
Explanation:
given,
time of rotation = 4.30 s
T = 4.30 s
Assuming the diameter of the ring equal to 16 m
radius, R = 8 m


v = 11.69 m/s
now, Force does the ring push on her at the top





N = 422.36 N
The force exerted by the ring to push her is equal to 422.36 N.
Because they are different they all show different traits.
Answer:
1.327363 m/s
0.00090243 m
Explanation:
u = Initial velocity
v = Final velocity
m = Mass of flea
Energy

The velocity of the flea when leaving the ground is 1.327363 m/s

The flea will travel 0.00090243 m upward