Answer:
Explanation:
The direction of force will be in upward direction making an angle of θ with the vertical .
Reaction force R = mg - F cosθ
Friction force = μR
= .36 (mg - F cosθ )
Horizontal component of applied force
= F sinθ
For equilibrium
F sinθ = .36 (mg - F cosθ)
F sinθ + .36 F cosθ =.36 mg
F (sinθ + .36 cosθ) = .36 mg
F R( cosδsinθ +sinδ cosθ) = .36 mg ( Rcosδ = 1 . Rsinδ= .36 )
F R sin( θ+δ ) = . 36 mg
F = .36 mg / Rsin( θ+δ )
For minimum F , sin( θ+δ ) should be maximum
sin( θ+ δ ) = sin 90
θ+ δ = 90
Rsinδ / Rcosδ = .36
δ = 20⁰
θ = 70⁰ Ans
Answer:
Archimedes Principle states that "any body completely or partially submerged in water is acted upon by an upthrust force which is equal to the magnitude of Weight of the body."
Answer:
126000 J
Explanation:
Applying,
Q = cm(t₂-t₁).................. Equation 1
Where Q = Amount of heat, c = specifc heat capacity of water, m = mass of water, t₁ = Initial temperature, t₂ = Final temperature.
From the question,
Given: m = 2 kg, t₁ = 25°C, t₂ = 40°C
Constant: c = 4200 J/kg.°C
Substitute these value into equation 1
Q = 2×4200(40-25)
Q = 2×4200×15
Q = 126000 J
Answer:
45 degrees
Explanation:
The textbooks say that the maximum range for projectile motion (with no air resistance) is 45 degrees.
Answer:
c. 2 MeV.
Explanation:
The computation of the binding energy is shown below
![= [Zm_p + (A - Z)m_n - N]c^2\\\\=[(1) (1.007825u) + (2 - 1 ) ( 1.008665 u) - 2.014102 u]c^2\\\\= (0.002388u)c^2\\\\= (.002388) (931.5 MeV)\\\\=2.22 MeV](https://tex.z-dn.net/?f=%3D%20%5BZm_p%20%2B%20%28A%20-%20Z%29m_n%20-%20N%5Dc%5E2%5C%5C%5C%5C%3D%5B%281%29%20%281.007825u%29%20%2B%20%282%20-%201%20%29%20%28%201.008665%20u%29%20-%202.014102%20u%5Dc%5E2%5C%5C%5C%5C%3D%20%280.002388u%29c%5E2%5C%5C%5C%5C%3D%20%28.002388%29%20%28931.5%20MeV%29%5C%5C%5C%5C%3D2.22%20MeV)
= 2 MeV
As 1 MeV = (1 u) c^2
hence, the binding energy is 2 MeV
Therefore the correct option is c.
We simply applied the above formula so that the correct binding energy could come
And, the same is to be considered