Answer:
i dont know but i will take the points tho hahah
Explanation:
Answer:
the maximum length of the specimen before deformation is 0.4366 m
Explanation:
Given the data in the question;
Elastic modulus E = 124 GPa = 124 × 10⁹ Nm⁻²
cross-sectional diameter D = 4.2 mm = 4.2 × 10⁻³ m
tensile load F = 1810 N
maximum allowable elongation Δl = 0.46 mm = 0.46 × 10⁻³ m
Now to calculate the maximum length
for the deformation, we use the following relation;
= [ Δl × E × π × D² ] / 4F
so we substitute our values into the formula
= [ (0.46 × 10⁻³) × (124 × 10⁹) × π × (4.2 × 10⁻³)² ] / ( 4 × 1810 )
= 3161.025289 / 7240
= 0.4366 m
Therefore, the maximum length of the specimen before deformation is 0.4366 m
Answer:
Option E
Explanation:
All the given statements are true except the velocity gradients normal to the flow direction are small since these are not normally small. It's true that viscous effects are present only inside the boundary layer and the fluid velocity equals the free stream velocity at the edge of the boundary layer. Moreover, Reynolds number is greater than unity and the fluid velocity is zero at the surface of the object.
The magnetic force on a free moving charge is perpendicular to both the velocity of the charge and the magnetic field with direction given by the right hand rule. The force is given by the charge times the vector product of velocity and magnetic field.