1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scrat [10]
3 years ago
7

Compared with space operations specialists, intelligence officers are which of the following?

Engineering
1 answer:
puteri [66]3 years ago
7 0

Answer:

whats the answer if you did it?

Explanation:

You might be interested in
An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 278C, and 75
Inessa [10]

Answer:

(a). The value of temperature at the end of heat addition process            T_{3} = 2042.56 K

(b). The value of pressure at the end of heat addition process                    P_{3} = 1555.46 k pa

(c). The thermal efficiency of an Otto cycle   E_{otto} = 0.4478

(d). The value of mean effective pressure of the cycle P_{m} = 1506.41 \frac{k pa}{kg}

Explanation:

Compression ratio r_{p} = 8

Initial pressure P_{1} = 95 k pa

Initial temperature T_{1} = 278 °c = 551 K

Final pressure P_{2} = 8 × P_{1} = 8 × 95 = 760 k pa

Final temperature T_{2} = T_{1} × r_{p} ^{\frac{\gamma - 1}{\gamma} }

Final temperature T_{2} = 551 × 8 ^{\frac{1.4 - 1}{1.4} }

Final temperature T_{2} = 998 K

Heat transferred at constant volume Q = 750 \frac{KJ}{kg}

(a). We know that Heat transferred at constant volume Q_{S} = m C_{v} ( T_{3} - T_{2}  )

⇒ 1 × 0.718 × ( T_{3} - 998 ) = 750

⇒ T_{3} = 2042.56 K

This is the value of temperature at the end of heat addition process.

Since heat addition is constant volume process. so for that process pressure is directly proportional to the temperature.

⇒ P ∝ T

⇒ \frac{P_{3} }{P_{2} } = \frac{T_{3} }{T_{2} }

⇒ P_{3} = \frac{2042.56}{998} × 760

⇒ P_{3} = 1555.46 k pa

This is the value of pressure at the end of heat addition process.

(b). Heat rejected from the cycle Q_{R} = m C_{v} ( T_{4} - T_{1}  )

For the compression and expansion process,

⇒ \frac{T_{3} }{T_{2} } = \frac{T_{4} }{T_{1} }

⇒ \frac{2042.56}{998} = \frac{T_{4} }{551}

⇒ T_{4} = 1127.7 K

Heat rejected Q_{R} = 1 × 0.718 × ( 1127.7 - 551)

⇒ Q_{R} = 414.07 \frac{KJ}{kg}

Net heat interaction from the cycle Q_{net} = Q_{S} - Q_{R}

Put the values of Q_{S} & Q_{R}  we get,

⇒ Q_{net} = 750 - 414.07

⇒ Q_{net} = 335.93 \frac{KJ}{kg}

We know that for a cyclic process net heat interaction is equal to net work transfer.

⇒ Q_{net} = W_{net}

⇒ W_{net} = 335.93 \frac{KJ}{kg}

This is the net work output from the cycle.

(c). Thermal efficiency of an Otto cycle is given by

E_{otto} = 1- \frac{T_{1} }{T_{2} }

Put the values of T_{1} & T_{2} in the above formula we get,

E_{otto} = 1- \frac{551 }{998 }

⇒ E_{otto} = 0.4478

This is the thermal efficiency of an Otto cycle.

(d). Mean effective pressure P_{m} :-

We know that mean effective pressure of  the Otto cycle is  given by

P_{m} = \frac{W_{net} }{V_{s} } ---------- (1)

where V_{s} is the swept volume.

V_{s} = V_{1}  - V_{2} ---------- ( 2 )

From ideal gas equation P_{1} V_{1} = m × R × T_{1}

Put all the values in above formula we get,

⇒ 95 × V_{1} = 1 × 0.287 × 551

⇒ V_{1} = 0.6 m^{3}

From the same ideal gas equation

P_{2} V_{2} = m × R × T_{2}

⇒ 760 × V_{2} = 1 × 0.287 × 998

⇒ V_{2} = 0.377 m^{3}

Thus swept volume V_{s} = 0.6 - 0.377

⇒ V_{s} = 0.223 m^{3}

Thus from equation 1 the mean effective pressure

⇒ P_{m} = \frac{335.93}{0.223}

⇒ P_{m} = 1506.41 \frac{k pa}{kg}

This is the value of mean effective pressure of the cycle.

4 0
3 years ago
Three identical fatigue specimens (denoted A, B, and C) are fabricated from a nonferrous alloy. Each is subjected to one of the
Law Incorporation [45]

Answer:

B A and C

Explanation:

Given:

Specimen         σ_{max}                      σ_{min}

A                       +450                      -150

B                       +300                      -300

C                       +500                      -200

Solution:

Compute the mean stress

σ_{m} =  (σ_{max}  +  σ_{min})/2

σ_{mA} =  (450 + (-150)) / 2

       =  (450 - 150) / 2  

       = 300/2

σ_{mA} = 150 MPa

σ_{mB}  = (300 + (-300))/2

        = (300 - 300) / 2

        = 0/2  

σ_{mB}  = 0 MPa

 

σ_{mC}  = (500 + (-200))/2

        = (500 - 200) / 2

        = 300/2

σ_{mC}  = 150 MPa  

Compute stress amplitude:

σ_{a} =  (σ_{max}  -  σ_{min})/2    

σ_{aA} =  (450 - (-150)) / 2

       =  (450 + 150) / 2

       = 600/2

σ_{aA} = 300 MPa

σ_{aB} =  (300- (-300)) / 2

       =  (300 + 300) / 2

       = 600/2

σ_{aB}  = 300 MPa

σ_{aC}  = (500 - (-200))/2

        = (500 + 200) / 2

        = 700 / 2

σ_{aC}   = 350 MPa

From the above results it is concluded that the longest  fatigue lifetime is of specimen B because it has the minimum mean stress.

Next, the specimen A has the fatigue lifetime which is shorter than B but longer than specimen C.

In the last comes specimen C which has the shortest fatigue lifetime because it has the higher mean stress and highest stress amplitude.

7 0
4 years ago
Which of the following describes the wireless standard?
Maksim231197 [3]
The awnswer is a. 802.11
7 0
3 years ago
Read 2 more answers
1.00-L insulated bottle is full of tea at 90.08°C. You pour out one cup of tea and immediately screw the stopper back on the bot
liberstina [14]

Answer:

T_{f} = 90.07998 ° C

Explanation:

This is a calorimetry process where the heat given by the Te is absorbed by the air at room temperature (T₀ = 25ºC) with a specific heat of 1,009 J / kg ºC, we assume that the amount of Tea in the cup is V₀ = 100 ml. The bottle being thermally insulated does not intervene in the process

                 Qc = -Qb

                M c_{e_Te} (T₁ -T_{f}) = m c_{e_air} (T_{f}-T₀)

Where M is the mass of Tea that remains after taking out the cup, the density of Te is the density of water plus the solids dissolved in them, the approximate values are from 1020 to 1200 kg / m³, for this calculation we use 1100 kg / m³

   ρ = m / V  

   V = 1000 -100 = 900 ml  

   V = 0.900 l (1 m3 / 1000 l) = 0.900 10⁻³ m³  

   V_air = 0.100 l = 0.1 10⁻³ m³  

Tea Mass  

     M = ρ V_te  

     M = 1100 0.9 10⁻³  

     M = 0.990 kg  

Air mass  

     m = ρ _air V_air  

     m = 1.225 0.1 10⁻³  

     m = 0.1225 10⁻³ kg  

(m c_{e_air} + M c_{e_Te}) T_{f}. = M c_{e_Te} T1 - m c_{e_air} T₀  

T_{f} = (M c_{e_Te} T₁ - m c_{e_air} T₀) / (m c_{e_air} + M c_{e_Te})  

Let's calculate  

T_{f} = (0.990 1100 90.08– 0.1225 10⁻³ 1.225 25) / (0.1225 10⁻³ 1.225 + 0.990 1100)  

T_{f} = (98097.12 -3.75 10⁻³) / (0.15 10⁻³ +1089)  

T_{f} = 98097.11 / 1089.0002  

T_{f} = 90.07998 ° C  

This temperature decrease is very small and cannot be measured

3 0
3 years ago
A Capacitor is a circuit component that stores energy and can be charged when current flows through it. A current of 3A flows th
Neko [114]

Answer:

8 μC

Explanation:

By definition, current is the rate of change of charge, so we can write the following equation for current I:

I = ΔQ / Δt

As charge must be conserved, all the charge carried by the current must add to the charge on the plates of the capacitor, so we can finf this incremental charge as follows:

ΔQ = I* Δt (assuming that current remains constant during the charging process)

⇒ ΔQ = 3 A* 2 μsec = 3 coul/sec*2 μsec = 6 μC

As the initial charge must be conserved also, the magnitude of the net electric charge of the capacitor must be as follows:

Qnet = Q₀+ ΔQ = 2 μC + 6 μC = 8 μC

5 0
3 years ago
Other questions:
  • Identify an object in your house that contains a physical system and list three questions you could use to define the system
    15·1 answer
  • A strip of chicken skin was excised for mechanical testing in tension. The initial dimensions of the rectangular specimen were 3
    14·1 answer
  • What is your understanding and opinion on the validity of the stand-by equipment maintenance requirement?
    15·1 answer
  • The water behind Hoover Dam in Nevada is 221 m higher than the Colorado River below it. At what rate must water pass through the
    6·1 answer
  • A 0.9% solution of NaCl is considered isotonic to mammalian cells. what molar concentration is this?
    10·1 answer
  • import java.util.Scanner; public class FindSpecialValue { public static void main (String [] args) { Scanner scnr = new Scanner(
    11·1 answer
  • What is the line called that has the red arrow pointing to it in the attached picture?
    6·1 answer
  • 2.5 Critically discuss how community needs may influence your choice of a career
    8·1 answer
  • Ammonia enters the expansion valve of a refrigeration system at a pressure of 10 bar and a temperature of 20oC and exits at 3.0
    5·1 answer
  • What was a campaign belief in the 1980 presidential election? Carter called for a stronger national defense. Carter promised to
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!